This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0002320130 Reproduction Date:
Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution (or an accurate approximation) of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem. The quantum Monte Carlo methods allow for a direct treatment and description of complex many-body effects encoded in the wave function, going beyond mean field theory and offering an exact solution of the many-body problem in some circumstances. In particular, there exist numerically exact and polynomially-scaling algorithms to exactly study static properties of boson systems without geometrical frustration. For fermions, there exist very good approximations to their static properties and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that are both.
In principle, any physical system can be described by the many-body Schrödinger equation as long as the constituent particles are not moving "too" fast; that is, they are not moving at a speed comparable to that of light, and relativistic effects can be neglected. This is true for a wide range of electronic problems in condensed matter physics, in Bose–Einstein condensates and superfluids such as liquid helium. The ability to solve the Schrödinger equation for a given system allows to predict its behavior, with important applications ranging from materials science to complex biological systems. The difficulty is however that solving the Schrödinger equation requires the knowledge of the many-body wave function on the many-body Hilbert space, which typically has an exponentially large size in the number of particles. Its solution for a reasonably large number of particles is therefore typically impossible, even for modern parallel computing technology in a reasonable amount of time. Traditionally, approximations for the many-body wave function as an antisymmetric function of one-body orbitals.^{[1]} have been used, in order to have a manageable treatment of the Schrödinger equation. This kind of formulation has however several drawbacks, either limiting the effect of quantum many-body correlations, as in the case of the Hartree–Fock (HF) approximation, or converging very slowly, as in configuration interaction applications in quantum chemistry.
Quantum Monte Carlo is a way to directly study the many-body problem and the many-body wave function beyond these approximations. The most advanced quantum Monte Carlo approaches provide an exact solution to the many-body problem for non-frustrated interacting boson systems, while providing an approximate, yet typically very accurate, description of interacting fermion systems. Most methods aim at computing the ground state wavefunction of the system, with the exception of path integral Monte Carlo and finite-temperature auxiliary field Monte Carlo, which calculate the density matrix. In addition to static properties, the time-dependent Schrödinger equation can also be solved, albeit only approximately, restricting the functional form of the time-evolved wave function, as done in the time-dependent variational Monte Carlo. From the probabilistic point of view, the computation of the top eigenvalues and the corresponding ground states eigenfunctions associated with the Schrödinger equation relies on the numerical solving of Feynman-Kac path integration problems.^{[2]}^{[3]} The mathematical foundations of Feynman-Kac particle absorption models and their Sequential Monte Carlo and mean field interpretations are developed in.^{[4]}^{[5]}^{[6]}^{[7]}^{[8]}
There are several quantum Monte Carlo methods, each of which uses Monte Carlo in different ways to solve the many-body problem:
Monographs on Statistics & Applied Probability
Series: Probability and Applications
Energy, Quantum field theory, Quantum mechanics, Proton, Wave function
Information, Quantum mechanics, Molecular physics, Condensed matter physics, Nuclear physics
Quantum mechanics, Standard Model, Particle physics, Cern, Higgs Boson
Flynn's taxonomy, Linear algebra, Project management, Computer science, Distributed computing
Quantum field theory, Hilbert space, Schrödinger equation, Quantum mechanics, Linear algebra
Distributed computing, Quantum Monte Carlo, Machine learning, D-Wave Systems, Berkeley Open Infrastructure for Network Computing
Quantum Monte Carlo, Quantum mechanics, Physics, Chemistry, Quantum chemistry
C , Renormalization group, Quantum Monte Carlo, Heisenberg model (quantum), Calculus of variations
Singapore, Macau, France, New Orleans, Chicago
Energy, Classical mechanics, Quantum Monte Carlo, Green's function, Schrödinger equation