World Library  
Flag as Inappropriate
Email this Article

Kelvin–Stokes theorem

Article Id: WHEBN0025441497
Reproduction Date:

Title: Kelvin–Stokes theorem  
Author: World Heritage Encyclopedia
Language: English
Subject: Stokes' theorem, Mechanics, Green's theorem, Electromagnetism, Maxwell's equations
Publisher: World Heritage Encyclopedia

Kelvin–Stokes theorem

The Kelvin–Stokes theorem,[1][2][3][4][5] also known as the curl theorem,[6] is a theorem in vector calculus on R3. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The Kelvin–Stokes theorem is a special case of the “generalized Stokes' theorem.”[7][8] In particular, the vector field on R3 can be considered as a 1-form in which case curl is the exterior derivative.


Let γ : [a, b] → R2 be a Piecewise smooth Jordan plane curve, that bounds the domain DR2.[note 1] Suppose ψ : DR3 is smooth, with S := ψ[D] [note 2] , and Γ is the space curve defined by Γ(t) = ψ(γ(t)).[note 3] If F a smooth vector field on R3, then[1][2][3]

\oint_\Gamma \mathbf{F}\, d\Gamma = \iint_S \nabla\times\mathbf{F}\, dS


The proof of the Theorem consists of 4 steps.[2][3][note 4] We assume that the Green's theorem is known, so what is of concern is "how to boil down the three-dimensional complicated problem (Kelvin–Stokes theorem) to a two-dimensional rudimentary problem (Green's theorem)". In an ordinary, mathematicians use the differential form, especially "pull-back[note 4] of differential form" is very powerful tool for this situation, however, learning differential form needs too much background knowledge. So, the proof below does not require background information on differential form, and may be helpful for understanding the notion of differential form.

First step of the proof (defining the pullback)


\mathbf{P}(u,v) = (P_1(u,v), P_2(u,v))

so that P is the pull-back[note 4] of F, and that P(u, v) is R2-valued function, depends on two parameter u, v. In order to do so we define P1 and P2 as follows.

P_1(u,v)=\left\langle \mathbf{F}(\psi(u,v)) \bigg| \frac{\partial \psi}{\partial u} \right\rangle, \qquad P_2(u,v)=\left\langle \mathbf{F}(\psi(u,v)) \bigg| \frac{\partial \psi}{\partial v} \right\rangle

Where, \langle \ |\ \rangle is the normal inner product of R3 and hereinafter, \langle \ |A|\ \rangle stands for bilinear form according to matrix A [note 5] .[note 6]

Second step of the proof (first equation)

According to the definition of line integral,

\begin{align} \oint_{\Gamma} \mathbf{F} d\Gamma &=\int_a^b \left\langle (\mathbf{F}\circ \psi (t))\bigg|\frac{d\Gamma}{dt}(t) \right\rangle \, dt \\ &= \int_a^b \left\langle (\mathbf{F}\circ \psi (t))\bigg|\frac{d(\psi\circ\gamma)}{dt}(t) \right\rangle \, dt \\ &= \int_a^b \left\langle (\mathbf{F}\circ \psi (t))\bigg|(J\psi)_{\gamma(t)}\cdot \frac{d\gamma}{dt}(t) \right\rangle \, dt \end{align}

where, Jψ stands for the Jacobian matrix of ψ. Hence,[note 5][note 6]

\begin{align} \left\langle (\mathbf{F}\circ \Gamma(t))\bigg|(J\psi)_{\gamma(t)}\frac{d\gamma}{dt}(t) \right\rangle &= \left\langle (\mathbf{F}\circ \Gamma (t))\bigg|(J\psi)_{\gamma(t)} \bigg|\frac{d\gamma}{dt}(t) \right\rangle \\ &= \left\langle ({}^{t}\mathbf{F}\circ \Gamma (t))\cdot(J\psi)_{\gamma(t)}\ \bigg|\ \frac{d\gamma}{dt}(t) \right\rangle \\ &= \left\langle \left( \left\langle (\mathbf{F}(\psi(\gamma(t))))\bigg|\frac{\partial\psi}{\partial u}(\gamma(t)) \right\rangle , \left\langle (\mathbf{F}(\psi(\gamma(t))))\bigg |\frac{\partial\psi}{\partial v}(\gamma(t)) \right\rangle \right) \bigg|\frac{d\gamma}{dt}(t)\right\rangle \\ &= \left\langle (P_1(u,v) , P_2(u,v))\bigg|\frac{d\gamma}{dt}(t)\right\rangle\\ &= \left\langle \mathbf{P}(u,v)\ \bigg|\frac{d\gamma}{dt}(t)\right\rangle \end{align}

So, we obtain following equation

\oint_{\Gamma} \mathbf{F} d\Gamma = \oint_{\gamma} \mathbf{P} d\gamma

Third step of the proof (second equation)

First, calculate the partial derivatives, using Leibniz rule of inner product

\begin{align} \frac{\partial P_1}{\partial v} &= \left\langle \frac{\partial (\mathbf{F}\circ \psi)}{\partial v} \bigg | \frac{\partial \psi}{\partial u} \right\rangle + \left\langle \mathbf{F}\circ \psi \bigg | \frac{\partial^2 \psi}{ \partial v \partial u} \right\rangle \\ \frac{\partial P_2}{\partial u} &= \left\langle \frac{\partial (\mathbf{F}\circ \psi)}{\partial u} \bigg | \frac{\partial \psi}{\partial v} \right\rangle + \left\langle \mathbf{F}\circ \psi \bigg | \frac{\partial^2 \psi}{\partial u \partial v} \right\rangle \end{align}

So,[note 5] [note 6] [note 7]

\begin{align} \frac{\partial P_1}{\partial v} - \frac{\partial P_2}{\partial u} &= \left\langle \frac{\partial (\mathbf{F}\circ \psi)}{\partial v} \bigg| \frac{\partial \psi}{\partial u} \right\rangle - \left\langle \frac{\partial (\mathbf{F}\circ \psi)}{\partial u} \bigg| \frac{\partial \psi}{\partial v} \right\rangle \\ &= \left\langle (J\mathbf{F})_{\psi(u,v)}\cdot \frac{\partial \psi}{\partial v} \bigg |\frac{\partial \psi}{\partial u} \right\rangle - \left\langle (J\mathbf{F})_{\psi(u,v)}\cdot \frac{\partial \psi}{\partial u} \bigg|\frac{\partial \psi}{\partial v} \right\rangle && \text{ chain rule}\\ &= \left\langle \frac{\partial \psi}{\partial u} \bigg|(J\mathbf{F})_{\psi(u,v)} \bigg| \frac{\partial \psi}{\partial v} \right\rangle - \left\langle \frac{\partial \psi}{\partial u} \bigg |{}^{t}(J\mathbf{F})_{\psi(u,v)} \bigg| \frac{\partial \psi}{\partial v} \right\rangle \\ &= \left\langle \frac{\partial \psi}{\partial u}\bigg |(J\mathbf{F})_{\psi(u,v)} - {}^{t}{(J\mathbf{F})}_{\psi(u,v)} \bigg| \frac{\partial \psi}{\partial v} \right\rangle \\ &= \left\langle \frac{\partial \psi}{\partial u}\bigg |\left ((J\mathbf{F})_{\psi(u,v)} - {}^t (J\mathbf{F})_{\psi(u,v)} \right )\cdot \frac{\partial \psi}{\partial v} \right\rangle \\ &= \left\langle \frac{\partial \psi}{\partial u}\bigg |(\nabla\times\mathbf{F})\times\frac{\partial \psi}{\partial v} \right\rangle && \left ( (J\mathbf{F})_{\psi(u,v)} - {}^{t} (J\mathbf{F})_{\psi(u,v)} \right ) \cdot \mathbf{x} = (\nabla\times\mathbf{F})\times \mathbf{x} \\ &=\det \left [ (\nabla\times\mathbf{F})(\psi(u,v)) \quad \frac{\partial\psi}{\partial u}(u,v) \quad \frac{\partial\psi}{\partial v}(u,v) \right ] && \text{ Scalar Triple Product} \end{align}

On the other hand, according to the definition of surface integral,

\begin{align} \iint_S (\nabla\times\mathbf{F}) \, dS &=\iint_D \left\langle (\nabla\times\mathbf{F})(\psi(u,v)) \bigg |\frac{\partial\psi}{\partial u}(u,v)\times \frac{\partial\psi}{\partial v}(u,v)\right\rangle \,du\,dv\\ &= \iint_D \det \left [ (\nabla\times\mathbf{F})(\psi(u,v)) \quad \frac{\partial\psi}{\partial u}(u,v) \quad \frac{\partial\psi}{\partial v}(u,v) \right ] \,du \,dv && \text{ scalar triple product} \end{align}

So, we obtain

\iint_S (\nabla\times\mathbf{F}) \,dS =\iint_D \left( \frac{\partial P_2}{\partial u} - \frac{\partial P_1}{\partial v} \right) \,du\,dv

Fourth step of the proof (reduction to Green's theorem)

According to the result of the second step, and according to the result of Third step, and further considering the Green's theorem, subjected equation is proved.

Application for conservative force and scalar potential

In this section, we will discuss the lamellar vector field based on Kelvin–Stokes theorem.

First, we define the notarization map, \theta_:[0,1]\to[a,b] as follows.


Above-mentioned \theta_ is a strongly increasing function that, for all piece wise smooth paths c:[a,b] → R3, for all smooth vector field F, domain of which includes c (image of [a,b] under c.), following equation is satisfied.

\int_c \mathbf{F}\ dc\ =\int_{c\circ\theta_}\ \mathbf{F}\ d(c\circ\theta_)

So, we can unify the domain of the curve from the beginning to [0,1].

The Lamellar vector field

In mechanics a lamellar vector field is called a conservative force; in fluid dynamics, it is called a Vortex-free vector field. So, lamellar vector field, conservative force, and vortex-free vector field are the same notion.

Helmholtz's theorems

In this section, we will introduce a theorem that is derived from the Kelvin–Stokes theorem and characterizes vortex-free vector fields. In fluid dynamics it is called Helmholtz's theorems,.[note 8]

That theorem is also important in the area of Homotopy theorem.[7]

Some textbooks such as Lawrence[7] call the relationship between c0 and c1 stated in Theorem 2-1 as “homotope”and the function H : [0, 1] × [0, 1] → U as “homotopy between c0 and c1”.

However, “homotope” or “homotopy” in above-mentioned sense are different toward (stronger than) typical definitions of “homotope” or “homotopy”.[note 9]

So there are no appropriate terminology which can discriminate between homotopy in typical sense and sense of Theorem 2-1. So, in this article, to discriminate between them, we say “Theorem 2-1 sense homotopy as tube-like-homotopy and, we say “Theorem 2-1 sense homotope” as tube-like homotope.[note 10]

Proof of the theorem

The definitions of γ1, ..., γ4

Hereinafter, the ⊕ stands for joining paths [note 11] the \ominus stands for backwards of curve [note 12]

Let D = [0, 1] × [0, 1]. By our assumption, c1 and c2 are piecewise smooth homotopic, there are the piecewise smooth homogony H : DM

\begin{align} \begin{cases} \gamma_1:[0, 1]\to D \\ \gamma_1(t) := (t,0) \end{cases}, \qquad &\begin{cases}\gamma_2:[0,1] \to D \\ \gamma_2(s) := (1, s) \end{cases} \\ \begin{cases} \gamma_3:[0, 1] \to D \\ \gamma_3(t) := (-t+0+1, 1)\end{cases}, \qquad &\begin{cases}\gamma_4:[0,1] \to D \\ \gamma_4(s) := (0, 1-s)\end{cases} \end{align}
\gamma(t):= (\gamma_1 \oplus \gamma_2 \oplus \gamma_3 \oplus \gamma_4)(t)
\Gamma_i(t):= H(\gamma_{i}(t)), \qquad i=1, 2, 3, 4
\Gamma(t):= H(\gamma(t)) =(\Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3 \oplus \Gamma_4)(t)

And, let S be the image of D under H. Then,

\oint_{\Gamma} \mathbf{F}\, d\Gamma = \iint_S \nabla\times\mathbf{F}\, dS

will be obvious according to the Theorem 1 and, F is Lamellar vector field that, right side of that equation is zero, so,

\oint_{\Gamma} \mathbf{F}\, d\Gamma =0


\oint_{\Gamma} \mathbf{F}\, d\Gamma =\sum_{i=1}^{4} \oint_{\Gamma_i} \mathbf{F} d\Gamma [note 11]

and, H is Tubeler-Homotopy that,

\Gamma_{2}(s)= {\Gamma}_{4}(1-s)=\ominus{\Gamma}_{4}(s)

that, line integral along \Gamma_{2}(s) and line integral along \Gamma_{4}(s) are compensated each other[note 12] so,

\oint_ \mathbf{F} d\Gamma +\oint_{\Gamma_3} \mathbf{F} d\Gamma =0

On the other hand,


that, subjected equation is proved.

Application for conservative force

Helmholtz's theorem, gives an explanation as to why the work done by a conservative force in changing an object's position is path independent. First, we introduce the Lemma 2-2, which is a corollary of and a special case of Helmholtz's theorem.

Lemma 2-2, obviously follows from Theorem 2-1. In Lemma 2-2, the existence of H satisfying [SC0] to [SC3]" is crucial. It is a well-known fact that, if U is simply connected, such H exists. The definition of Simply connected space follows:

You will find that, the [SC1] to [SC3] of both Lemma 2-2 and Definition 2-2 is same.

So, someone may think that, the issue, "when the Conservative Force, the work done in changing an object's position is path independent" is elucidated. However there are very large gap between following two.

  • There are continuous H such that it satisfies [SC1] to [SC3]
  • There are piecewise smooth H such that it satisfies [SC1] to [SC3]

To fill that gap, the deep knowledge of Homotopy Theorem is required. For example, to fill the gap, following resources may be helpful for you.

Considering above-mentioned fact and Lemma 2-2, we will obtain following theorem. That theorem is anser for subjecting issue.

Kelvin–Stokes theorem on singular 2-cube and cube subdivisionable sphere

Singular 2-cube and boundary

Given D:=\times, we define the notarization map of sngler two cube {\theta}_{D}:{I}^{2}\to D

{\theta}_{D}({u}_{1},{u}_{2})= \left( \begin{array}{c} {u}_{1}({b}_{1}-{a}_{1}) +{a}_{1}\\ {u}_{2}({b}_{2}-{a}_{2}) +{a}_{2} \end{array} \right)

here, the I:=[0,1] and I2 stands for {I}^{2}=I\times I.

Above-mentioned is strongly increase function (that means det(J(\theta_{D})_{({u}_{1},{u}_{2})})>0 (for all ({u}_{1},{u}_{2})\in\mathbb{R}^{3} ) that, following lemma is satisfied.

Above-mentioned lemma is obverse that, we neglects the proof. Acceding to the above-mentioned lemma, hereinafter, we consider that, domain of all singular 2-cube are notarized (that means, hereinafter, we consider that domain of all singular 2-cube are from the beginning, I2.

In order to facilitate the discussion of boundary, we define \delta_:\mathbb{R}^k \to \mathbb{R}^{k+1} by

\delta_(t_1,\cdots,t_k):= (t_1,\cdots,t_{j-1},c,t_{j+1},\cdots,t_k)

γ1, ..., γ4 are the one-dimensional edges of the image of I2.Hereinafter, the ⊕ stands for joining paths[note 11] and,  the \ominus stands for backwards of curve .[note 12]

\begin{align} \begin{cases} \gamma_{1}:[0, 1]\to {I}^{2} \\ \gamma_{1}(t) := {\delta}_(t)=(t,0) \end{cases}, \qquad &\begin{cases}\gamma_{2}:[0,1] \to { I }^{2} \\ \gamma_{2}(t) :={\delta}_(t)=(1, t) \end{cases} \\ \begin{cases} \gamma_{3}:[0, 1] \to {I}^{2} \\ \gamma_{3}(t) := \ominus{\delta}_(t)= (-t+0+1, 1)\end{cases}, \qquad &\begin{cases}\gamma_{4}:[0,1] \to {I}^{2} \\ \gamma_{4}(t) := \ominus{\delta}_(t) =(0, 1-t)\end{cases} \end{align}
\gamma(t):= (\gamma_{1} \oplus \gamma_{2} \oplus \gamma_{3} \oplus \gamma_{4})(t)
\Gamma_{i}(t):= \varphi(\gamma_{i}(t)), \qquad i=1, 2, 3, 4
\Gamma(t):= \varphi(\gamma(t)) =(\Gamma_{1} \oplus \Gamma_{2} \oplus \Gamma_{3} \oplus \Gamma_{4})(t)

Cube subdivision

The definition of the boundary of the Definitions 3-3 is apparently depends on the cube subdevision. However, considering the following fact, the boundary is not depends on the cube subdevision.

So, considering the above-mentioned fact, following "Definition3-4" is well-defined.

Notes and references


  1. ^ The Jordan curve theorem implies that the Jordan curve divides R2 into two components, a compact one (the bounded area) and another is non-compact.
  2. ^ When ψ is a mapping and D is a subset of the domain of ψ, ψ[D] stands for the image of D under ψ.
  3. ^ γ and Γ are both loops, however, Γ is not necessarily a Jordan curve
  4. ^ a b c If you know the differential form, when we considering following identification of the vector field A = (a1, a2, a3),
    \mathbf{A} = \omega_{\mathbf{A}} = a_1 dx_1+a_2\,dx_2+a_3\,dx_3
    \mathbf{A} = {}^{*} \omega_{\mathbf{A}} = a_1\,dx_2 \wedge dx_3+a_2 \,dx_3 \wedge dx_1+a_3 \,dx_1 \wedge dx_2,
    the proof here is similar to the proof using the pull-back of ωF. In actual, under the identification of ωF = F following equations are satisfied.
    \begin{align} \nabla\times\mathbf{F} &= d\omega_{\mathbf{F}} \\ \psi^{*}\omega_{\mathbf{F}} &= P_1du +P_2dv \\ \psi^{*}(d \omega_{\mathbf{F}}) &= \left (\frac{\partial P_2}{\partial u} - \frac{\partial P_1}{\partial v} \right ) du\wedge dv \end{align}
    Here, d stands for Exterior derivative of Differential form, ψ* stands for pull back by ψ and, P1 and P2 of above mentioned are same as P1 and P2 of the body text of this article respectively.
  5. ^ a b c Given a n × m matrix A we define a bilinear form:
    \mathbf{x} \in \mathbf{R}^m, \mathbf{y} \in \mathbf{R}^n \ : \qquad \left\langle \mathbf{x} |A| \mathbf{y} \right\rangle ={}^{t}\mathbf{x}A\mathbf{y}
    which also satisfies:
    \left \langle \mathbf{x} |A| \mathbf{y} \right \rangle= \left \langle \mathbf{y} |{}^{t}A| \mathbf{x} \right \rangle.
    \left \langle \mathbf{x} |A| \mathbf{y} \right \rangle + \left \langle \mathbf{x} |B| \mathbf{y}\right \rangle = \left \langle \mathbf{x} |A+B|\mathbf{y}\right \rangle
  6. ^ a b c Given a n × m matrix A , tA stands for transposed matrix of A.
  7. ^ We prove following (★0).
    ({(J\mathbf{F})}_{\psi(u,v)} - {}^{t}{(J\mathbf{F})}_{\psi(u,v)}) \mathbf{x} = (\nabla\times\mathbf{F})\times \mathbf{x}, \quad \text{for all}\, \mathbf{x}\in\mathbb{R}^{3} (★0)
    First, we focus attention on the linearity of the algebraic operator "a×" and, we obtain the matrix representation thereof. The method how to obtain the matrix representation of Linear map are described in for example [1].Let both of a and x are the three dimensional Column vector and are represented as follows,
    \mathbf{a}= \left( \begin{array}{l} a_1\\ a_2\\ a_3 \end{array} \right)\ \ \mathbf{x}= \left( \begin{array}{l} x_1\\ x_2\\ x_3 \end{array} \right)
    Then, according to the definition of Cross product ” ×”, a×x are represented as follows.
    \mathbf{a}\times\mathbf{x}= \left( \begin{array}{l} a_2 x_3-a_3 x_2\\ a_3 x_1-a_1 x_3\\ a_1 x_2-a_2 x_1 \end{array} \right)
    Therefore, when we act the operator ” a×” to each of the standard basis, we obtain followings, therefore, we obtain the matrix representation of a×” as shown in (★1).
    \mathbf{a}\times\mathbf{e}_{1}= \left( \begin{array}{c} 0\\ a_3\\ -a_2 \end{array} \right)\ \ \mathbf{a}\times\mathbf{e}_{2}= \left( \begin{array}{c} -a_3\\ 0\\ a_1 \end{array} \right)\ \ \mathbf{a}\times\mathbf{e}_{3}= \left( \begin{array}{c} a_2\\ -a_1\\ 0 \end{array} \right)  
    \mathbf{a}\times\mathbf{x}= \left( \begin{array}{ccc} 0&-a_3&a_2\\ a_3&0&-a_1\\ -a_2&a_1&0 \end{array} \right)\left( \begin{array}{c} x_1\\ x_2\\ x_3 \end{array} \right)  (★1)
    Seconds, let A=(a_{ij}) is a 3×3 matrix and using the following substitution,( a1, ... , a3 are components of a ),
    {a}_{1}={a}_{32}-{a}_{23} (★2-1)
    {a}_{2}={a}_{13}-{a}_{31} (★2-2)
    {a}_{3}={a}_{21}-{a}_{12} (★2-3)
    Then we obtain following (★3) from the (★1).
    (A-{}^{t}A)\mathbf{x}=\mathbf{a}\times\mathbf{x} (★3)
    Third we substitute the J\mathbf{F} to abovementioned A, under the substitution of (★2-1), (★2-2), and (★2-3), we obtain the following (★4)
    \mathbf{a}=(\nabla\times\mathbf{F}) (★4)
    The (★0) is obvious from (★3) and (★4).
  8. ^ There are a number of theorems with the same name, however they are not necessarily the same.
  9. ^ Typical definition of homotopy and homotope are as follows.
  10. ^ In Some textbooks such as Lawrence Conlon;"Differentiable Manifolds (Modern Birkhauser Classics)" Birkhaeuser Boston (2008/1/11)[2] use the term of homotopy and homotope in Theorem 2-1 sense. homotopy and homotope in Theorem 2-1 sense Indeed, it is convenience to adopt such sense to discuss conservative force. However, homotopy in Theorem 2-1 sense and homotope in Theorem 2-1 sense are different from and stronger than homotopy in typical sense and homotope in typical sense. So there are no appropriate terminology which can discriminate between homotopy in typical sense and sense of Theorem 2-1. In this article, to avoid ambiguity and to discriminate between them, we will define two “just-in-time term”, tube-like homotopy and tube-like homotope as follows.
  11. ^ a b c Given two curves α: [a1, b1] → M , β: [a2, b2, ] → M, if α and β satisfy α(b1) = β(a2) then, we can define new curve α ⊕ β so that, for all smooth vector field F (if domain of which includes image of α ⊕ β )
    \int_{\alpha\oplus \beta} \mathbf{F} \, d(\alpha\oplus \beta)= \int_\alpha \mathbf{F} \, d\alpha + \int_\beta \mathbf{F} \, d\beta,
    which is also used when we define the fundamental group. To do so, accurate definition of the “joint of paths” is as follows.
  12. ^ a b c Given curve on M, α : [a1, b1] → M , we can define new curve \ominusα so that, for all smooth vector field F (if domain of which includes image of α )
    \int_{\ominus\alpha} \mathbf{F} \, d(\ominus\alpha)= -\int_{\alpha}\mathbf{F} \, d\alpha,
    which is also used when we define fundamental group. To do so, accurate definition of the “backwards of curve” is as follows.
    And, given two curves on M, α: [a1, b1] → M β: [a2, b2] → M which satisfies α(b1 = β(b2) (that means α(b1) = \ominus β(a2), we can define \alpha\ominus\beta as following manner.


  1. ^ a b James Stewart;"Essential Calculus: Early Transcendentals" Cole Pub Co (2010)[3]
  2. ^ a b c This proof is based on the Lecture Notes given by Prof. Robert Scheichl (University of Bath, U.K) [4], please refer the [5]
  3. ^ a b c This proof is also same to the proof shown in
  4. ^ a b c d e Nagayoshi Iwahori,"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12 ISBN978-4-7853-1039-4 [6](Written in Japanese)
  5. ^ a b Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" Bai-Fu-Kan(jp)(1979/01) ISBN 978-4563004415 [7](Written in Japanese)
  6. ^
  7. ^ a b c d e f g Lawrence Conlon; "Differentiable Manifolds (Modern Birkhauser Classics)" Birkhaeuser Boston (2008/1/11) [8]
  8. ^ a b c d e f John M. Lee; "Introduction to Smooth Manifolds (Graduate Texts in Mathematics, 218) "Springer (2002/9/23) [9] [10]
  9. ^ L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, American Mathematical Society Translations, Ser. 2, Vol. 11, American Mathematical Society, Providence, R.I., 1959, pp. 1–114. MR 0115178 (22 #5980 [11])[12]
  10. ^ Michael Spivak:"Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus" Westview Press, 1971 [13]
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.