World Library  
Flag as Inappropriate
Email this Article

List of Quaternary volcanic eruptions

Article Id: WHEBN0026560562
Reproduction Date:

Title: List of Quaternary volcanic eruptions  
Author: World Heritage Encyclopedia
Language: English
Subject: List of volcanoes, List of currently erupting volcanoes, Quaternary geology, Quaternary, Timeline of volcanism on Earth
Collection: Volcanology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

List of Quaternary volcanic eruptions

Clickable imagemap of notable volcanic eruptions. The apparent volume of each bubble is linearly proportional to the volume of tephra ejected, colour-coded by time of eruption as in the legend. Pink lines denote convergent boundaries, blue lines denote divergent boundaries and yellow spots denote hotspots.

This article is a list of volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Holocene, and Pleistocene eruptions of the Decade Volcanoes (Avachinsky-Koryaksky, Kamchatka; Colima, Trans-Mexican Volcanic Belt; Mount Etna, Sicily; Galeras, Andes, Northern Volcanic Zone; Mauna Loa, Hawaii; Mount Merapi, Central Java; Mount Nyiragongo, East African Rift; Mount Rainier, Washington; Sakurajima, Kagoshima Prefecture; Santamaria/ Santiaguito, Central America Volcanic Arc; Santorini, Cyclades; Taal Volcano, Luzon Volcanic Arc; Teide, Canary Islands; Ulawun, New Britain; Mount Unzen, Nagasaki Prefecture; Mount Vesuvius, Naples); Campania, Italy; South Aegean Volcanic Arc; Laguna de Bay, Luzon Volcanic Arc; Mount Pinatubo, Luzon Volcanic Arc; Toba, Sunda Arc; Mount Meager, Garibaldi Volcanic Belt; Yellowstone hotspot, Wyoming; and Taupo Volcanic Zone, greater than VEI 4.

The eruptions in the Holocene on the link: Holocene Volcanoes in Kamchatka were not added yet, but they are listed on the Peter L. Ward's supplemental table.[1] Some of the eruptions are not listed on the Global Volcanism Program timetable as well, at least not as VEI 6. The timetables of Global Volcanism Program;[2] Bristlecone pine tree-rings (Pinus longaeva, Pinus aristata, Pinus ponderosa, Pinus edulis, Pseudotsuga menziesii);[3] the 4 ka Yamal Peninsula Siberian larch (Larix sibirica) chronology;[4] the 7 ka Scots pine (Pinus sylvestris) chronology from Finish Lapland;[5][6] GISP2 ice core;[7][8] GRIP ice core;[9] Dye 3 ice core;[9] Bipolar comparison;[10] Antarctic ice core (Bunder and Cole-Dai, 2003);[11] Antarctic ice core (Cole-Dai et al., 1997);[12] Crête ice core, in central Greenland,[13] benthic foraminifera in deep sea sediment cores (Lisiecki, Raymo 2005),[14] do not agree with each other sometimes. The 536–547 AD dust-veil event might be an impact event.[3][15]

Contents

  • Holocene eruptions 1
    • Since 1000 AD 1.1
    • 1 to 1000 AD 1.2
    • Before the Common Era (BC/BCE) 1.3
  • Pleistocene eruptions 2
  • Notes 3
    • Nomenclature 3.1
  • References 4
  • External links 5

Holocene eruptions

The Holocene epoch begins 11,700 years BP,[16] (10 000 14C years ago)

Since 1000 AD

1809–10 ice core event
  • Pinatubo, island of Luzon, Philippines; 1991, Jun 15; VEI 6; 6 to 16 cubic kilometres (1.4 to 3.8 cu mi) of tephra;[2] an estimated 20 million tons of sulfur dioxide were emitted[17]
  • Novarupta, Alaska Peninsula; 1912, Jun 6; VEI 6; 13 to 15 cubic kilometres (3.1 to 3.6 cu mi) of lava[18][19][20]
  • Santa Maria, Guatemala; 1902, Oct 24; VEI 6; 20 cubic kilometres (4.8 cu mi) of tephra[21]
  • Mount Tarawera, Taupo Volcanic Zone, New Zealand; 1886, Jun 10; VEI 5; 2 cubic kilometres (0.48 cu mi) of tephra[2]
  • Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 cubic kilometres (5.0 cu mi) of tephra[22]
  • Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 150 cubic kilometres (36 cu mi) of tephra;[2] an estimated 10-120 million tons of sulfur dioxide were emitted, produced the "Year Without a Summer"[23]
  • 1809–10 ice core event; an unknown eruption at a near-equatorial location and a magnitude roughly half that of Tambora, emission of sulfur dioxide around the amount of the 1815 Tambora eruption (ice cores from Antarctica and Greenland).[24] In the year 1808, there were also major eruptions in Urzelina, Azores (Urzelina eruption, fissure vent), Klyuchevskaya Sopka, Kamchatka Peninsula,[25] and Taal Volcano, Philippines.[26]
  • Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; 14 cubic kilometres of lava, an estimated 120 million tons of sulfur dioxide were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[28]
  • Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 cubic kilometers (7.2 cu mi) of tephra[2]
  • Kolumbo, Santorini, Greece; 1650, Sep 27; VEI 6; 60 cubic kilometers (14.4 cu mi) of tephra[29]
  • Huaynaputina, Peru; 1600, Feb 19; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[30]
  • Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 cubic kilometres (3.4 cu mi) of tephra[2]
  • Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra[2]
  • 1452–53 ice core event, New Hebrides arc, Vanuatu; location of this eruption in the South Pacific is uncertain; only pyroclastic flows are found at Kuwae; 36 to 96 cubic kilometres (8.6 to 23.0 cu mi) of tephra; 175-700 million tons of sulfuric acid[31][32][33]
  • Mount Tarawera, Taupo Volcanic Zone, New Zealand; 1310 ±12; VEI 5; 5 cubic kilometres (1.2 cu mi) of tephra (Kaharoa eruption)[2]
  • Quilotoa, Ecuador; 1280(?); VEI 6; 21 cubic kilometres (5.0 cu mi) of tephra[2]
  • Samalas volcano, Rinjani Volcanic Complex, Lombok Island, Indonesia; 1257; 40 km3 (dense-rock equivalent) of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.[34][35][36]

1 to 1000 AD

  • Changbai Mountains (Changbaishan), Eastern China/ North Korea border; Tianchi eruption of the Baekdu Mountain; 969 AD ±20 years;[37] VEI 7; 76 to 116 cubic kilometers (18.2 to 27.8 cu mi) of tephra[2]
  • Eldgjá eruption, Laki system, Iceland; 934-940 AD; VEI 4; an estimated 18 cubic kilometres (4.3 cu mi) of lava poured out of the earth,[38] an estimated 219 million tons of sulfur dioxide were emitted[39]
Major volcanoes of Mexico
  • Ceboruco, Northwest of the Trans-Mexican Volcanic Belt; 930 AD ±200; VEI  6; 11 cubic kilometres (2.6 cu mi) of tephra[2]
  • Dakataua, Northern tip of the Willaumez Peninsula, New Britain, Papua New Guinea; 800 AD ±50; VEI 6?; 10 cubic kilometres (2.4 cu mi)? of tephra[2]
  • Pago, East of Kimbe, New Britain, Papua New Guinea; Witori Caldera; 710 AD ±75; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[2]
  • Mount Churchill, eastern Alaska; 700 AD ±200; VEI 6; 20 cubic kilometres (4.8 cu mi) of tephra[2]
  • Rabaul, Rabaul Caldera, New Britain; 540 AD ±100; VEI 6; 11 cubic kilometres (2.6 cu mi) of tephra[2]
  • Ilopango, El Salvador; 450 AD ±30; VEI 6; 71 cubic kilometres (17 cu mi) of tephra[2]
  • Ksudach, Kamchatka Peninsula, Russia; 240 AD ±l00; VEI 6; 20 to 26 cubic kilometers (4.8 to 6.2 cu mi) of tephra[2]
  • Taupo Volcanic Zone, Hatepe eruption of Taupo Volcano, New Zealand; 230 AD ±16; VEI 7; 120 cubic kilometres (29 cu mi) of tephra[40]
  • Mount Vesuvius, Italy; 79 AD Oct 24 (?); VEI 5?; 2.8 to 3.8 cubic kilometers (0.7 to 0.9 cu mi) of tephra (Pompeii eruption)[2][41][42]
  • Mount Churchill, eastern Alaska; 60 AD ±200; VEI 6; 25 cubic kilometres (6.0 cu mi) of tephra[2]
  • Ambrym, Vanuatu; 50 AD ±100; VEI 6; 6 to 8 cubic kilometers (1.4 to 1.9 cu mi) of tephra[2]

Before the Common Era (BC/BCE)

  • Apoyeque, Nicaragua; 50 BC ±100; VEI 6; 18 cubic kilometres (4.3 cu mi) of tephra[2]
  • Okmok, Okmok Caldera, Aleutian Islands; 100 BC ±50; VEI 6; 4 to 6 cubic kilometers (1.0 to 1.4 cu mi) of tephra[2]
  • Raoul Island, Kermadec Islands, New Zealand; 250 BC ±75; VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[2]
  • Mount Meager, Garibaldi Volcanic Belt, Canada; 400 BC ±50; VEI 5
  • Mount Tongariro, Taupo Volcanic Zone, New Zealand; 550 BC ±200; VEI 5; 1.2 cubic kilometres (0.29 cu mi) of tephra[2]
  • Pinatubo, island of Luzon, Philippines; 1050 BC ±500; VEI 6; 10 to 16 cubic kilometers (2.4 to 3.8 cu mi) of tephra[2]
  • Avachinsky, Kamchatka; 1350 BC (?); VEI 5; more than 1.2 cubic kilometres (0.29 cu mi) of tephra (tephra layer IIAV3)[2]
  • Pago, east of Kimbe, New Britain, Papua New Guinea; Witori Caldera; 1370 BC ±100; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[2]
  • Taupo Volcanic Zone, Taupo, New Zealand; 1460 BC ±40; VEI 6; 17 cubic kilometres (4.1 cu mi) of tephra[2]
  • Avachinsky, Kamchatka; 1500 BC (?); VEI 5; more than 3.6 cubic kilometres (0.86 cu mi) of tephra (tephra layer AV1)[2]
  • Santorini (Thera), Greece; Youngest Caldera; Minoan eruption; 1610 BC ±14 years; VEI 7; 99 cubic kilometres (24 cu mi) of tephra;[2] ending the Minoan settlement at Akrotiri and the Minoan age on Crete
  • Mount Aniakchak, Alaska Peninsula; 1645 BC ±10; VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[2]
  • Veniaminof, Alaska Peninsula; 1750 BC (?); VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[2]
  • Mount St. Helens, Washington, USA; 1860 BC (?); VEI 6; 15 cubic kilometres (3.6 cu mi) of tephra[2]
  • Mount Hudson, Cerro, Southern Chile; 1890 BC (?); VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[2]
  • Black Peak, Alaska Peninsula; 1900 BC ±150; VEI 6; 10 to 50 cubic kilometers (2.4 to 12.0 cu mi) of tephra[2]
  • Long Island (Papua New Guinea), Northeast of New Guinea; 2040 BC ± 100; VEI 6; more than 11 cubic kilometres (2.6 cu mi) of tephra[2]
  • Mount Vesuvius, Italy; 2420 BC ±40; VEI 5?; 3.9 cubic kilometres (0.94 cu mi) of tephra (Avellino eruption)[2][41][42][43]
  • Avachinsky, Kamchatka; 3200 BC ±150; VEI 5; more than 1.1 cubic kilometres (0.26 cu mi) of tephra (tephra layer IAv20; AV3)[2]
  • Pinatubo, island of Luzon, Philippines; 3550 BC (?); VEI 6; 10 to 16 cubic kilometers (2.4 to 3.8 cu mi) of tephra[2]
  • Talisay (Taal) caldera (size: 15 x 20 km), island of Luzon, Philippines; 3580 BC ±200; VEI 6; 50 cubic kilometres (12 cu mi) of tephra[2]
  • Haroharo Caldera, Taupo Volcanic Zone, New Zealand; 3580 BC ±50; VEI 5; 2.8 cubic kilometres (0.67 cu mi) of tephra[2]
  • Pago, New Britain; 4000 BC ± 200; VEI 6?; 10 cubic kilometres (2.4 cu mi)? of tephra[2]
  • Masaya Volcano, Nicaragua; 4050 BC (?); VEI 6; more than 13 cubic kilometres (3.1 cu mi) of tephra[2]
  • Avachinsky, Kamchatka; 4340 BC ±75; VEI 5; more than 1.3 cubic kilometres (0.31 cu mi) of tephra (tephra layer IAv12; AV4)[2]
  • Kikai Caldera (size: 19 km), Ryukyu Islands, Japan; Akahoya eruption; 4350 BC (?); VEI 7; 80 to 220 cubic kilometers (19.2 to 52.8 cu mi) of tephra[2]
  • Macauley Island, Kermadec Islands, New Zealand; 4360 BC ±200; VEI 6; 100 cubic kilometres (24 cu mi)? of tephra[2][44]
  • Mount Hudson, Cerro, Southern Chile; 4750 BC (?); VEI 6; 18 cubic kilometres (4.3 cu mi) of tephra[2]
  • Mount Aniakchak, Alaska Peninsula; 5250 BC ±1000; VEI 6; 10 to 50 cubic kilometers (2.4 to 12.0 cu mi) of tephra[2]
  • Mashu, Hokkaido, Japan; 5550 BC ±100; VEI 6; 19 cubic kilometres (4.6 cu mi) of tephra[2]
  • Tao-Rusyr Caldera, Kuril Islands; 5550 BC ±75; VEI 6; 30 to 36 cubic kilometers (7.2 to 8.6 cu mi) of tephra[2]
  • Mayor Island/Tuhua, Taupo Volcanic Zone, New Zealand; 5060 BC ±200; VEI 5; 1.6 cubic kilometres (0.38 cu mi) of tephra[2]
  • Crater Lake (Mount Mazama), Oregon, USA; 5677 BC ±150; VEI 7; 150 cubic kilometres (36 cu mi) of tephra[2]
  • Khangar, Kamchatka Peninsula, Russia; 5700 BC ± 16; VEI 6; 14 to 16 cubic kilometers (3.4 to 3.8 cu mi) of tephra[2]
  • Crater Lake (Mount Mazama), Oregon, USA; 5900 BC ± 50; VEI 6; 8 to 28 cubic kilometers (1.9 to 6.7 cu mi) of tephra[2]
  • Avachinsky, Kamchatka; 5980 BC ±100; VEI 5; more than 8 to 10 cubic kilometers (1.9 to 2.4 cu mi) of tephra (tephra layer IAv1)[2]
  • Menengai, East African Rift, Kenya; 6050 BC (?); VEI 6; 70 cubic kilometres (17 cu mi)? of tephra[2]
  • Haroharo Caldera, Taupo Volcanic Zone, New Zealand; 6060 BC ±50; VEI 5; 1.2 cubic kilometres (0.29 cu mi) of tephra[2]
  • Sakurajima, island of Kyūshū, Japan; Aira Caldera; 6200 BC ±1000; VEI 6; 12 cubic kilometres (2.9 cu mi) of tephra[2]
  • Kurile Caldera (size: 8 x 14 km), Kamchatka Peninsula, Russia; 6440 BC ± 25 years; VEI 7; 140 to 180 cubic kilometers (33.6 to 43.2 cu mi) of tephra (Ilinsky eruption)[2]
  • Karymsky, Kamchatka Peninsula, Russia; 6600 BC (?); VEI 6; 50 to 350 cubic kilometers (12.0 to 84.0 cu mi) of tephra[2]
  • Mount Vesuvius, Italy; 6940 BC ±100; VEI 5?; 2.75 to 2.85 cubic kilometers (0.7 to 0.7 cu mi) of tephra (Mercato eruption)[2][41][42]
  • Fisher Caldera, Unimak Island, Aleutian Islands; 7420 BC ±200; VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[2]
  • Pinatubo, island of Luzon, Philippines; 7460 BC ±150; VEI 6?[2]
  • Lvinaya Past, Kuril Islands; 7480 BC ±50; VEI 6; 7 to 8 cubic kilometers (1.7 to 1.9 cu mi) of tephra[2]
  • Rotoma Caldera, Taupo Volcanic Zone, New Zealand; 7560 BC ±18; VEI 5; more than 5.6 cubic kilometres (1.3 cu mi) of tephra[2]
  • Taupo Caldera, Taupo Volcanic Zone, New Zealand; 8130 BC ±200; VEI 5; 4.7 cubic kilometres (1.1 cu mi) of tephra[2]
  • Grímsvötn, Northeastern Iceland; 8230 BC ±50; VEI 6; more than 15 cubic kilometres (3.6 cu mi) of tephra[2]
  • Ulleung, Korea; 8750 BC (?); VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[2]
  • Mount Tongariro, Taupo Volcanic Zone, New Zealand; 9450 BC (?); VEI 5; 1.7 cubic kilometres (0.41 cu mi) of tephra[2]
  • Taupo Caldera, Taupo Volcanic Zone, New Zealand; 9460 BC ±200; VEI 5; 1.4 cubic kilometres (0.34 cu mi) of tephra[2]
  • Mount Tongariro, Taupo Volcanic Zone, New Zealand; 9650 BC (?); VEI 5; 1.6 cubic kilometres (0.38 cu mi) of tephra[2]
  • Nevado de Toluca, State of Mexico, Trans-Mexican Volcanic Belt; 10.5 ka; VEI  6; 14 cubic kilometres (3.4 cu mi) of tephra (Upper Toluca Pumice )[2][45]
  • 11.258 ka; GISP2 ice core event[1]

Pleistocene eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

  • 12.657 ka; GISP2 ice core event[1]
  • Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.900 ka; VEI 6; 6 cubic kilometers (1.4 cu mi) of tephra.[46][47][48][49]
  • Mount Vesuvius, Italy; 16 ka; VEI 5; (Green Pumice)[41][42]
  • Mount Vesuvius, Italy; 18.3 ka; VEI 6; (Basal Pumice)[41][42]
  • Santorini (Thera), Greece; Cape Riva Caldera; about 21 ka[2]
  • Aira Caldera, south of the island of Kyūshū, Japan; about 22 ka; VEI 7; more than 400 cubic kilometers (96.0 cu mi) of tephra.[50]
  • Taupo Volcanic Zone, Oruanui eruption, Taupo volcano, New Zealand, around 24.5 ka in the Late Pleistocene, VEI 8; generated approximately 1,170 cubic kilometers (280.7 cu mi) of tephra.[51][52][53][54]
  • Laguna Caldera (size: 10 x 20 km), South-East of Manila, island of Luzon; 27-29 ka[2]
  • Campi Flegrei, Naples, Italy; 39.280 ka ± 0.11;[55] 200 cubic kilometres of lava (Campanian Tuff) [1]
  • Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 40 ka; 2 cubic kilometers (0.5 cu mi) of tephra
  • Taupo Volcanic Zone, Rotoiti Ignimbrite, North Island, New Zealand; VEI 7; about 50 ka, about 240 cubic kilometers (57.6 cu mi) of tephra.[56]
  • Santorini (Thera), Greece; Skaros Caldera; about 70 ka[2]
  • Lake Toba (size: 100 x 30 km), Sumatra, Indonesia; 73 ka ±4; 2,500 to 3,000 cubic kilometers (599.8 to 719.7 cu mi) of tephra; probably 6,000 million tons of sulfur dioxide were emitted (Youngest Toba Tuff).[17][57][58][59][60]
  • Yellowstone hotspot; Yellowstone Caldera; between 70 and 150 ka; 1,000 cubic kilometers (239.9 cu mi) intracaldera rhyolitic lava flows.[2]
  • Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 150 ka; 2 cubic kilometers (0.5 cu mi) of tephra
  • Kos-Nisyros Caldera, Greece; 161 ka; 110 km3 (26 cu mi) of Kos Plateau Tuff.[1]
  • Taal Caldera, island of Luzon, Philippines; 25–30 km caldera formed by four explosive eruptions between 500 and 100 ka
  • Santorini (Thera), Greece; Southern Caldera; about 180 ka[2]
  • Taupo Volcanic Zone, Rotorua Caldera (size: 22 km wide), New Zealand; 220 ka; more than 340 cubic kilometers (81.6 cu mi) of tephra.[1]
  • Taupo Volcanic Zone, Maroa Caldera (size: 16 x 25 km), New Zealand; 230 ka; 140 cubic kilometers (33.6 cu mi) of tephra.[1]
  • Taupo Volcanic Zone, Reporoa Caldera (size: 10 x 15 km), New Zealand; 230 ka; VEI 7; around 100 cubic kilometers (24.0 cu mi) of tephra[2]
  • Taupo Volcanic Zone, Whakamaru Caldera (size: 30 x 40 km), North Island, New Zealand; around 254 ka; VEI 8; 1,200 to 2,000 cubic kilometers (288 to 480 cu mi) of tephra (Whakamaru Ignimbrite/Mount Curl Tephra)[61][62]
  • Taupo Volcanic Zone, Matahina Ignimbrite, Haroharo Caldera, North Island, New Zealand; VEI 7; 280 ka; about 120 cubic kilometers (28.8 cu mi) of tephra.[63]
  • Sabatini volcanic complex, Sabatini, Italy; 374 ka; more than 200 cubic kilometers (48 cu mi) of Morphi tephra.[1]
  • Roccamonfina Caldera (size: 65 x 55 km), Roccamonfina, Italy; 385 ka; 100 to 125 cubic kilometers (24.0 to 30.0 cu mi) of tephra.[1]
  • Lake Toba, Sumatra, Indonesia; 501 ka ±5 (Middle Toba Tuff)[59]
  • Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 560 ka; 15 cubic kilometers (3.6 cu mi) of tephra
  • Yellowstone hotspot; Yellowstone Caldera (size: 45 x 85 km); 640 ka; VEI 8; more than 1,000 cubic kilometers (240 cu mi) of tephra (Lava Creek Tuff)[2]
  • Lake Toba, Sumatra, Indonesia; 840 ka ±30 (Oldest Toba Tuff)[59]
  • Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 0.97 Ma; more than 300 cubic kilometers (72.0 cu mi) Rocky Hill Ignimbrite[1]
  • Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 1.01 Ma; more than 300 cubic kilometers (72.0 cu mi) Unit E[1]
  • Lake Toba, Sumatra, Indonesia; 1.2 ±0.16 Ma (Haranggoal Dacite Tuff)[59]
  • Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 1.23 Ma; more than 300 cubic kilometers (72.0 cu mi) Ongatit Ignimbrite[1][64]
  • Yellowstone hotspot; Henry's Fork Caldera (size: 16 km wide); 1.3 Ma; VEI 7; 280 cubic kilometers (67.2 cu mi) of Mesa Falls Tuff.[2]
  • Yellowstone hotspot; Island Park Caldera (size: 100 x 50 km); 2.1 Ma; VEI 8; 2,450 cubic kilometers (588 cu mi) of Huckleberry Ridge Tuff.[1][2]

Notes

List of Quaternary volcanic eruptions is located in Iceland
Grímsvötn
Grímsvötn
Laki
Laki
Eldgjá
Eldgjá
Katla
Katla
Bárðarbunga
Bárðarbunga
Torfajökull
Torfajökull
Askja
Askja
Loki
Loki
Eyjafjallajökull
Eyjafjallajökull
Iceland: volcanoes
Volcanism in Iceland
  • Iceland has four volcanic zones: Reykjanes (Mid-Atlantic Ridge),[65] West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ). The Mid-Iceland Belt (MIB) connects them across central Iceland. There are two intraplate belts too (Öræfajökull (ÖVB) and Snæfellsnes (SVB)).
    • Iceland's East Volcanic Zone: the central volcanoes of Vonarskard and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna.[66][67][68]
      • Laki is part of a volcanic system, centering on the Grímsvötn volcano (Long NE-SW-trending fissure systems, including Laki, extend from the central volcano).[2]
      • The Eldgjá canyon and the Katla volcano form another volcanic system. Although the Eldgjá canyon and the Laki fissure are very near from each other, lava from the Katla and the Hekla volcanic systems result in transitional alkalic basalts and lava from the central volcanoes result in tholeiitic basalts.
      • The central volcano of Bárðarbunga, the Veidivötn and Trollagigar fissures form one volcanic system, which extend about 100 km SW to near Torfajökull volcano and 50 km NE to near Askja volcano, respectively. The subglacial Loki-Fögrufjöll volcanic system located SW of Bárðarbunga volcano is also part of the Bárðarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano (15 km southwest of Bárðarbunga); the Loki ridge trends to the NE and the Fögrufjöll ridge to the SW.[2]
  • New Zealand, North Island, Taupo Volcanic Zone:
  • Santorini, South Aegean Volcanic Arc. The southern Aegean is one of the most rapidly deforming regions of the Himalayan-Alpine mountain belt (Alpide belt).[72]
  • The twin volcanoes of Nindirí and Masaya lie within the massive Pleistocene Las Sierras pyroclastic shield volcano.[2]
  • There are two peaks in the Colima volcano complex: Nevado de Colima (4,330 m), which is older and inactive, lies 5 km north of the younger and very active 3,860 m Volcán de Colima (also called Volcán de Fuego de Colima).
  • The largely submarine Kuwae Caldera cuts the flank of the Late Pleistocene or Holocene Tavani Ruru volcano, the submarine volcano Karua lies near the northern rim of Kuwae Caldera.[2]
  • Bismarck volcanic arc, the Rabaul Caldera includes the sub-vent of Tavurvur and the sub-vent of Vulcan.
  • Bismarck volcanic arc, Pago volcano, New Britain, Papua New Guinea, is a young post-caldera cone within the Witori Caldera. The Buru Caldera cuts the SW flank of the Witori volcano.[2]
  • Sakurajima, Kyūshū, Japan, is a volcano of the Aira Caldera.
  • The Mount Unzen volcanic complex, East of Nagasaki, Japan, comprises three large stratovolcanoes with complex structures, Kinugasa on the North, Fugen-dake at the East-center, and Kusenbu on the South.

Nomenclature

Each state/ country seem to have a slightly different approach, but there is an order:

  • Craton, and then Province as sections or regions of a craton.
  • First: volcanic arc, volcanic belt and volcanic zone.
  • Second: volcanic area, caldera cluster and caldera complex.
  • Third: volcanic field, volcanic system and volcanic center.
    • A volcanic field is a localized area of the Earth's crust that is prone to localized volcanic activity.
    • A volcanic group (aka a volcanic complex) is a collection of related volcanoes or volcanic landforms.
  • Neutral: volcanic cluster and volcanic locus.

In the Basin and Range Province the volcanic fields are nested. The McDermit volcanic field, is also named Orevada rift volcanic field. The Latir-Questa volcanic locus and the Taos Plateau volcanic field seem to be in a similar area. The Southwest Nevada volcanic field, the Crater Flat-Lunar Crater volcanic zone, the Central Nevada volcanic field, the Indian Peak volcanic field and the Marysvale volcanic field seem to have no transition between each other; the Ocate volcanic field is also known as the Mora volcanic field; and the Red Hill volcanic field is also known as Quemado volcanic field.

References

  1. ^ a b c d e f g h i j k l m "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces". Teton Tectonics. Retrieved 2010-03-16. 
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions
  3. ^ a b Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr". Quaternary Research 67: 57–68.  
  4. ^ Hantemirov, Rashit M.; Shiyatov, Stepan G. (2002). "A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia". The Holocene 12 (6): 717–726.  
  5. ^ Eronen, Matti; Pentti Zetterberg; Keith R. Briffa; Markus Lindholm; Jouko Meriläinen; Mauri Timonen (2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences". The Holocene 12 (6): 673–680.  
  6. ^ Helama, Samuli; Markus Lindholm; Mauri Timonen; Jouko Meriläinen; Matti Eronen (2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer temperatures for 7500 years". The Holocene 12 (6): 681–7.  
  7. ^ Zielinski, Gregory A.; Mayewski, P.A.; Meeker, L.D.; Whitlow, S.; Twickler, M.S.; Morrison, M.; Meese, D.A.; Gow, A.J.; Alley, R.B. (13 May 1994). "Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano–climate system".  
  8. ^ Zielinski, Gregory A. (1995). "Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core".  
  9. ^ a b Clausen, H.B.; Hammer, C.U.; Hvidberg, C.S.; Dahl-Jensen, D.; Steffensen, J.P.; Kipfstuhl, J.; Legrand, M. (1997). "A comparison of volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland ice cores.". Journal of Geophysical Research 102 (C12): 26707–23.  
  10. ^ Langway, C.C.; Osada, K.; Clausen, H.B.; Hammer, C.U.; Shoji, H. (1995). "A 10-century comparison of prominent bipolar volcanic events in ice cores.". Journal of Geophysical Research 100 (D8): 16241–16247.  
  11. ^ Budner, Drew, and Cole-Dai, Jihong (2003). Robock, A., and Oppenheimer, C., ed. "Volcanic Events from a New South Pole Ice Core". Geophysical Monograph Series 139. American Geophysical Union. pp. 165–176.  
  12. ^ Cole-Dai, J.; Mosley-Thompson, E.; Thompson, L.G. (1997). "Annually resolved southern hemisphere volcanic history from two Antarctic ice cores". Journal of Geophysical Research 102: 16761–71.  
  13. ^ Crowley, Thomas J.; Criste, Tamara A.; Smith, Neil R. (1993). "Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change". Geophysical Research Letters 20 (3): 209–212.  
  14. ^ Lisiecki, L. E.; Raymo, M. E. (January 2005). O records"18"A Pliocene-Pleistocene stack of 57 globally distributed benthic δ (PDF). Paleoceanography 20: PA1003.  
    Lisiecki, L. E.; Raymo, M. E. (May 2005). "Correction to "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records"". Paleoceanography 20 (2): PA2007.  
    data: doi:10.1594/PANGAEA.704257.
  15. ^ Baillie, M.G.L. (1994). "Dendrochronology raises questions about the nature of the AD 536 dust-veil event". The Holocene 4 (2): 212–7.  
  16. ^ "International Stratigraphic Chart".  
  17. ^ a b Robock, A., C.M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?".  
  18. ^ Brantley, Steven R. (1999-01-04). Volcanoes of the United States. Online Version 1.1.  
  19. ^ Judy Fierstein; Wes Hildreth; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98". Version 1.0.  
  20. ^ Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology (Springer) 54 (8): 646.  
  21. ^ "Santa Maria". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03%3D. Retrieved 2010-03-19.
  22. ^ Hopkinson, Deborah (Jan 2004). "The Volcano That Shook the world: Krakatoa 1883" 11 (4). New York: Scholastic.com. p. 8. 
  23. ^ Oppenheimer, Clive (2003). "Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815". Progress in Physical Geography 27 (2): 230–259.  
  24. ^ Dai, Jihong; Ellen Mosley-Thompson and Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research (Atmospheres) 96 (D9): 17,361–17,366.  
  25. ^ http://www.kscnet.ru/ivs/kvert/volcanoes/Klyuchevskoy/index_eng.html
  26. ^ http://www.iml.rwth-aachen.de/Petrographie/taal-mas/ta-maso.htm
  27. ^ Baker, P. E. (1967). "Historical and geological notes on Bouvetoya". British Antarctic Survey Bulletin 13: 71–84. Retrieved 17 June 2010. Abstract: it is suggested that "Thompson Island",... may have disappeared as a result of a volcanic eruption during the nineteenth century. 
  28. ^ BBC Timewatch: "Killer Cloud", broadcast 19 January 2007
  29. ^ Haraldur Sigurdsson, S. Carey, C. Mandeville (1990). "Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano". Thera and the Aegean World III: Proceedings of the Third Thera Conference II. pp. 100–12. 
  30. ^ "Huaynaputina". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-03%3D. Retrieved 2008-12-29.
  31. ^ Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal 1 (5): 7–11.  
  32. ^ Gao, Chaochao; A. Robock, S. Self, J. B. Witter, J. P. Steffenson, H. B. Clausen, M.-L. Siggaard-Andersen, S. Johnsen, P. A. Mayewski, and C. Ammann (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research 111: D12107.  
  33. ^ Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release".  
  34. ^ Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences of the United States of America (PNAS). Retrieved 1 October 2013. 
  35. ^ "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013. 
  36. ^ Oppenheimer, Clive (19 Mar 2003). "Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption". International Journal of Climatology (Royal Meteorological Society) 23 (4): 417–426.  
  37. ^ Horn, Susanne; Schmincke, Hans-Ulrich (2000). "Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD". Bulletin of Volcanology 61 (8): 537–555.  
  38. ^ "Katla: Eruptive History". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1702-03%3D%26volpage%3Derupt.
  39. ^ "Laki and Eldgjá—two good reasons to live in Hawai`". USGS - Hawaiian Volcano Observatory. 26 November 2008. Retrieved 2009-08-06. 
  40. ^ "Taupo - Eruptive History". Global Volcanism Program.  
  41. ^ a b c d e "Summary of the eruptive history of Mt. Vesuvius". Osservatorio Vesuviano, Italian National Institute of Geophysics and Volcanology. Retrieved 2006-12-08. 
  42. ^ a b c d e "Somma-Vesuvius". Department of Physics, University of Rome. Retrieved 2006-12-08. 
  43. ^ "An ancient Bronze Age village (3500 bp) destroyed by the pumice eruption in Avellino (Nola-Campania)". Retrieved 2006-12-08. 
  44. ^ Latter, J. H.; Lloyd, E. F.; Smith, I. E. M.; Nathan, S. (1992). Volcanic hazards in the Kermadec Islands and at submarine volcanoes between southern Tonga and New Zealand, Volcanic hazards information series 4. Wellington, New Zealand. Ministry of Civil Defence. 44 p.
  45. ^ Arce, J. L.; Macías, J. L.; Vázquez-Selem, L. (2003). "The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications". Geological Society of America Bulletin 115 (2): 230–248.  
  46. ^ van den Bogaard, P (1995). "40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance". Earth and Planetary Science Letters 133 (1–2): 163–174.  
  47. ^ P de Klerk, W Janke, P Kühn and M Theuerkauf (December 2008). "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology 270 (1–2): 196–214.  
  48. ^ Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research 58 (3): 273–288.  
  49. ^ . Spiegel Online, 13. Februar 2007.Forscher warnen vor Vulkan-Gefahr in der Eifel Retrieved January 11, 2008
  50. ^ Aramaki, Shigeo (1984). "Formation of the Aira Caldera, Southern Kyushu, ∼22,000 Years Ago".  
  51. ^ Wilson, Colin J. N. (2001). "The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview". Journal of Volcanology and Geothermal Research 112: 133–174.  
  52. ^ Manville, Vern & Wilson, Colin J. N. (2004). "The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response". New Zealand Journal of Geology & Geophysics 47 (3): 525–547.  
  53. ^ Wilson, Colin J. N. et al. (2006). "The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, Characteristics and Evacuation of a Large Rhyolitic Magma Body". Journal of Petrology 47 (1): 35–69.  
  54. ^ Richard Smith, David J. Lowe and Ian Wright. 'Volcanoes - Lake Taupo', Te Ara - the Encyclopedia of New Zealand, updated 16-Apr-2007
  55. ^ De Vivo, B.; G. Rolandi, P. B. Gans, A. Calvert, W. A. Bohrson, F. J. Spera and H. E. Belkin (November 2001). "New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)". Mineralogy and Petrology (Springer Wien) 73 (1–3): p. 47–65.  
  56. ^ Froggatt, P. C. and Lowe, D. J. (1990). "A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age". New Zealand Journal of Geology and Geophysics 33: 89–109.  
  57. ^ Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters (American Geophysical Union) 23 (8): 837–840.  
  58. ^ Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp 173-200
  59. ^ a b c d Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified". Geology 19 (3): 200–203.  
  60. ^ Ninkovich, D.; N.J. Shackleton, A.A. Abdel-Monem, J.D. Obradovich, G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature (Nature Publishing Group) 276 (276): 574–577.  
  61. ^ Froggatt, P. C.; Nelson, C. S.; Carter, L.; Griggs, G.; Black, K. P. (13 February 1986). "An exceptionally large late Quaternary eruption from New Zealand". Nature 319 (6054): 578–582.  .
  62. ^ Bryan, Scott E.; Teal R. Riley; Dougal A. Jerram; Christopher J. Stephens; Philip T. Leat (2002). "Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins". Geological Society of America (Special Paper 362). Retrieved 2010-03-23. 
  63. ^ Bailet, R. A. and Carr, R. G. (1994). "Physical geology and eruptive history of the Matahina Ignimbrite, Taupo Volcanic Zone, North Island, New Zealand". New Zealand Journal of Geology and Geophysics 37 (3): 319–344.  
  64. ^ Briggs, R.M.; Gifford, M.G.; Moyle, A.R.; Taylor, S.R.; Normaff, M.D.; Houghton, B.F.; Wilson, C.J.N. (1993). "Geochemical zoning and eruptive mixing in ignimbrites from Mangakino volcano, Taupo Volcanic Zone, New Zealand". Journal of Volcanology and Geothermal Research 56 (3): 175–203.  .
  65. ^ "Reykjanes". Global Volcanism Program. Retrieved 2010-04-20. 
  66. ^ Gudmundsson, Magnús T.; Thórdís Högnadóttir (January 2007). "Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data". Journal of Geodynamics 43 (1): 153–169.  
  67. ^ T. Thordarson and G. Larsen (January 2007). "Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history". Journal of Geodynamics 43 (1): 118–152.  
  68. ^ "Surtsey Nomination Report 2007". Surtsey, Island. Retrieved 2010-03-30. 
  69. ^ Cole, J.W. (1990). "Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand". Bulletin of Volcanology 52 (6): 445–459.  
  70. ^ L. M. Parson and I. C. Wright (1996). "The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading". Tectonophysics 263: 1–22.  
  71. ^ Krippner, Stephen J. P., Briggs, Roger M., Wilson, Colin J. N., Cole, James W. (1998). "Petrography and geochemistry of lithic fragments in ignimbrites from the Mangakino Volcanic Centre: implications for the composition of the subvolcanic crust in western Taupo Volcanic Zone, New Zealand". New Zealand Journal of Geology and Geophysics 41 (2): 187–199.  
  72. ^ The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives By Michaēl Phytikas, Georges E. Vougioukalakis, 2005, Elsevier, 398 pages, ISBN 0-444-52046-5

External links

  • "Decade Volcanoes".  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.