A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry.^{[1]} In quantum mechanics, electron configurations of atoms are described as wavefunctions. In mathematical sense, these wave functions are the basis set of functions, the basis functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified, i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.
It was introduced in 1929 by Sir John LennardJones with the description of bonding in the diatomic molecules of the first main row of the periodic table, but had been used earlier by Linus Pauling for H_{2}^{+}.^{[2]}^{[3]}
A mathematical description follows.
An initial assumption is that the number of molecular orbitals is equal to the number of atomic orbitals included in the linear expansion. In a sense, n atomic orbitals combine to form n molecular orbitals, which can be numbered i = 1 to n and which may not all be the same. The expression (linear expansion) for the i th molecular orbital would be:

\ \phi_i = c_{1i} \chi_1 + c_{2i} \chi_2 + c_{3i} \chi_3 + \cdots +c_{ni} \chi_n
or

\ \phi_i = \sum_{r} c_{ri} \chi_r
where \ \phi_i (phi) is a molecular orbital represented as the sum of n atomic orbitals \ \chi_r (chi), each multiplied by a corresponding coefficient \ c_{ri} , and r (numbered 1 to n) represents which atomic orbital is combined in the term. The coefficients are the weights of the contributions of the n atomic orbitals to the molecular orbital. The Hartree–Fock procedure is used to obtain the coefficients of the expansion.
The orbitals are thus expressed as linear combinations of basis functions, and the basis functions are oneelectron functions which may or may not be centered around the nuclei of the component atoms of the molecule. In either case the basis functions are usually also referred to as atomic orbitals (even though only in the former case this name seems to be adequate). The atomic orbitals used are typically those of hydrogenlike atoms since these are known analytically i.e. Slatertype orbitals but other choices are possible like Gaussian functions from standard basis sets.
By minimizing the total energy of the system, an appropriate set of coefficients of the linear combinations is determined. This quantitative approach is now known as the Hartree–Fock method. However, since the development of computational chemistry, the LCAO method often refers not to an actual optimization of the wave function but to a qualitative discussion which is very useful for predicting and rationalizing results obtained via more modern methods. In this case, the shape of the molecular orbitals and their respective energies are deduced approximately from comparing the energies of the atomic orbitals of the individual atoms (or molecular fragments) and applying some recipes known as level repulsion and the like. The graphs that are plotted to make this discussion clearer are called correlation diagrams. The required atomic orbital energies can come from calculations or directly from experiment via Koopmans' theorem.
This is done by using the symmetry of the molecules and orbitals involved in bonding. The first step in this process is assigning a point group to the molecule. A common example is water, which is of C_{2v} symmetry. Then a reducible representation of the bonding is determined demonstrated below for water:

Each operation in the point group is performed upon the molecule. The number of bonds that are unmoved is the character of that operation. This reducible representation is decomposed into the sum of irreducible representations. These irreducible representations correspond to the symmetry of the orbitals involved.
MO diagrams provide simple qualitative LCAO treatment.

Quantitative theories are the Hückel method, the extended Hückel method and the Pariser–Parr–Pople method.
See also
External links

LCAO @ chemistry.umeche.maine.edu Link
References

^ Huheey, James. Inorganic Chemistry:Principles of Structure and Reactivity

^ Friedrich Hund and Chemistry, Werner Kutzelnigg, on the occasion of Hund's 100th birthday, Angewandte Chemie, 35, 572–586, (1996), http://dx.doi.org/10.1002/anie.199605721

^ Robert S. Mulliken's Nobel Lecture, Science, 157, no. 3784, 13  24, (1967)
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.