World Library  
Flag as Inappropriate
Email this Article

Frequentist statistics

Article Id: WHEBN0001874268
Reproduction Date:

Title: Frequentist statistics  
Author: World Heritage Encyclopedia
Language: English
Subject: Statistical hypothesis testing, Bayes factor
Publisher: World Heritage Encyclopedia

Frequentist statistics

Frequentist inference is one of a number of possible techniques of formulating generally applicable schemes for making statistical inference: That implies of drawing conclusions from sample data by the emphasis on the frequency or proportion of the data. An alternative name is frequentist statistics. This is the inference framework in which the well-established methodologies of statistical hypothesis testing and confidence intervals are based. Other than frequentistic inference, the main alternative approach to statistical inference is Bayesian inference, while another is fiducial inference.

While "Bayesian inference" is sometimes held to include the approach to inference leading to optimal decisions, a more restricted view is taken here for simplicity.


To a large extent, frequentist inference has been associated with the frequency interpretation of probability, specifically that any given experiment can be considered as one of an infinite sequence of possible repetitions of the same experiment, each capable of producing statistically independent results.[1] In this view, the frequentist inference approach to drawing conclusions from data is effectively to require that the correct conclusion should be drawn with a given (high) probability, among this notional set of repetitions. However, exactly the same procedures can be developed under a subtly different formulation. This is one where a pre-experiment point of view is taken. It can be argued that the design of an experiment should include, before undertaking the experiment, decisions about exactly what steps will be taken to reach a conclusion from the data yet to be obtained. These steps can be specified by the scientist so that there is a high probability of reaching a correct decision where, in this case, the probability relates to a yet to occur set of random events and hence does not rely on the frequency interpretation of probability. This formulation has been discussed by Neyman,[2] among others.

Similarly, Bayesian inference has often been thought of as almost equivalent to the Bayesian interpretation of probability and thus that the essential difference between frequentist inference and Bayesian inference is the same as the difference between the two interpretations of what a "probability" means. However, where appropriate, Bayesian inference (meaning in this case an application of Bayes' theorem) is used by those employing a frequentist interpretation of probabilities.

There are two major differences in the frequentist and Bayesian approaches to inference that are not included in the above consideration of the interpretation of probability:

  • In a frequentist approach to inference, unknown parameters are often, but not always, treated as having fixed but unknown values that are not capable of being treated as random variates in any sense, and hence there is no way that probabilities can be associated with them. In contrast, a Bayesian approach to inference does allow probabilities to be associated with unknown parameters, where these probabilities can sometimes have a frequency probability interpretation as well as a Bayesian one. The Bayesian approach allows these probabilities to have an interpretation as representing the scientist's belief that given values of the parameter are true [see Bayesian probability - Personal probabilities and objective methods for constructing priors].
  • While "probabilities" are involved in both approaches to inference, the probabilities are associated with different types of things. The result of a Bayesian approach can be a probability distribution for what is known about the parameters given the results of the experiment or study. The result of a frequentist approach is either a "true or false" conclusion from a significance test or a conclusion in the form that a given sample-derived confidence interval covers the true value: either of these conclusions has a given probability of being correct, where this probability has either a frequency probability interpretation or a pre-experiment interpretation.

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.