World Library  
Flag as Inappropriate
Email this Article

LED backlight

Article Id: WHEBN0009055350
Reproduction Date:

Title: LED backlight  
Author: World Heritage Encyclopedia
Language: English
Subject: Quantum dot, Thin-film-transistor liquid-crystal display, Samsung X360
Publisher: World Heritage Encyclopedia

LED backlight

This article is about backlights in liquid crystal displays. For the rear window of an automobile, see Car glass. For the lighting design practice, see Backlighting (lighting design).

A backlight is a form of illumination used in liquid crystal displays (LCDs). As LCDs do not produce light themselves (unlike for example Cathode ray tube (CRT) displays), they need illumination (ambient light or a special light source) to produce a visible image. Backlights illuminate the LCD from the side or back of the display panel, unlike frontlights, which are placed in front of the LCD. Backlights are used in small displays to increase readability in low light conditions such as in wristwatches,[1] and in computer displays and LCD televisions to produce light in a manner similar to a CRT display. A review of some early backlighting schemes for LCDs is given in a report by Peter J. Wild IEEE First-Hand History[2] under its section Backlit LCDs.

Simple types of LCD displays are built without an internal light source, requiring external light sources to convey the display image to the user. Modern LCD screens, however, are built with an internal light source. Such LCD screens consist of several layers. The backlight is usually the first layer from the back. But in order to create screen images, a mechanism is needed to regulate the light intensity of the screen's pixels. For this, light valves are used that vary the amount of light reaching the target by blocking its passage in some way. The most common element is a polarizing filter to polarize the light from the source in one of two transverse directions and then passing it through a switching polarizing filter, to block the path of undesirable light.

Light source types

The light source can be made up of:

An ELP gives off uniform light over its entire surface, but other backlights usually employ a diffuser to provide even lighting from an uneven source.

Backlights can be any color. Monochrome LCDs usually have yellow, green, blue or white backlights, while color displays use white backlights that cover most of the color spectrum.


Colored LED backlighting is most commonly used in small, inexpensive LCD panels. White LED backlighting is becoming more common. ELP backlighting is often used for larger displays or when even backlighting is important; it can also be either colored or white. An ELP must be driven by relatively high[specify] voltage AC power, which is provided by an inverter circuit. CCFL backlights are used on large displays like computer monitors, and are usually white in color. These also require the use of an inverter and diffuser. Incandescent backlighting can be used when very high brightness is desired, but a drawback is the limited life of incandescent bulbs, and the amount of heat generated, which often means that the bulb needs to be mounted away from the display.

CCFL backlights

For several years (until about 2010) the preferred backlight for matrix-addressed large LCD panels such as in monitors and TVs was based on CCFLs, either by using two CCFLs at opposite edges of the LCD or by an array of CCFLs behind the LCD (see picture of an array with 18 CCFLs for a 40-inch LCD TV). Due to the disadvantages in comparison with LED illumination (higher voltage and power needed, thicker panel design, no high-speed switching, faster aging), LED backlighting is taking over.

LED backlights

LED backlighting in color screens comes in two flavors: white LED backlights and RGB LED backlights.[3] White LEDs are used most often in notebooks and desktop screens, and in virtually all mobile LCD screens. A white LED is typically a blue LED with broad spectrum yellow phosphor to give the impression of white light. Since the spectral curve peaks at yellow, it is a poor match to the transmission peaks of the red and green color filters of the LCD. This causes the red and green primaries to shift toward yellow, reducing the color gamut of the display. RGB LEDs consist of a red, a blue, and a green LED and can be controlled to produce different color temperatures of white. RGB LEDs for backlighting are found in high end color proofing displays such as HP DreamColor LP2480zx monitor or selected HP EliteBook notebooks, as well as newer consumer grade displays such as Dell's Studio series laptops which have an optional RGB LED display.

RGB LEDs can deliver an enormous color gamut to screens. When using three separate LEDs (additive color) the backlight can produce a color spectrum that closely matches the color filters in the LCD pixels themselves. In this way, the filter passband can be narrowed so that each color component lets only a very narrow band of spectrum through the LCD. This improves the efficiency of the display since less light is blocked when white is displayed. Also, the actual red, green, and blue points can be moved farther out so that the display is capable of reproducing more vivid colors.

A new method to further improve the color gamut of LED-backlit LCD panels is based on blue LEDs (such as GaN) illuminating a layer of nanocrystal phosphors, so-called Quantum Dots,[4] which convert the blue wavelengths to the desired longer wavelengths for optimal illumination of the LCD from behind. The manufacturer, Nanosys Inc., claims, that the color output of the dots can be tuned precisely by controlling the size of the nanocystals. Other companies pursuing this method are Nanoco Group PLC (UK), QD Vision and 3M.[5] Sony has adapted Quantum Dot technology from the US company QD Vision[6] to introduce LCD TVs with an improved edge-lit LED backlight marketed under the term Triluminos in 2013. With a single blue LED and optimized nanocrystals for green and red colors in front of it, the resulting combined white light allows for an equivalent or better color gamut than the light emitted by a more expensive set of three RGB LEDs.

CCFL backlighting has also improved in this respect. Many LCD models, from cheap TN-displays to color proofing S-IPS or S-PVA panels, have wide gamut CCFLs representing more than 95% of the NTSC color specification.

There are several challenges with LED backlights. Good uniformity is harder to achieve, especially as the LEDs age, with each LED possibly aging at a different rate. Also, the use of three separate light sources for red, green, and blue means that the G2420HDBL).

The use of LED backlights in notebook computers has been growing. Sony has used LED backlights in some of its higher-end slim VAIO notebooks since 2005. Fujitsu introduced notebooks with LED backlights in 2006. In 2007, Asus, Dell, and Apple introduced LED backlights into some of their notebook models. As of 2008, Lenovo has also announced LED-backlit notebooks. In October 2008, Apple announced it will be using LED backlights for all its notebook and its new 24-inch Apple Cinema Display, and one year later it introduced a new LED iMac, meaning all of Apple's computer screens are now LED. Almost every laptop with 16:9 display introduced since September 2009 uses LED-backlit panels. This is also the case for most LCD television sets, which are marketed in some countries under the misleading name LED TV, although the image is still generated by an LCD panel.

Most LED backlights for LCDs are edge-lit, i.e. several LEDs are placed at the edges of a lightguide, which distributes the light behind the LC panel. Advantages of this technique are the very thin flat-panel construction and low cost. A more expensive version is called full-array or direct LED and consists of many LEDs placed behind the LC panel (an array of LEDs), such that large panels can be evenly illuminated. This arrangement allows for local dimming to obtain darker black pixels depending on the image displayed.

Flicker due to backlight dimming

LED backlights are often dimmed by applying pulse-width modulation to the supply current, switching the backlight off and on again like a fast strobe light. If the frequency of the pulse-width modulation is too low and or the user is very sensitive to flicker, this may cause discomfort and eye-strain, similar to the flicker of CRT displays.[8][9] This can be tested by a user simply by waving a hand or object in front of the screen. If the object appears to have sharply-defined edges as it moves, the backlight is strobing on and off at a fairly low frequency. If the object appears blurry, the display either has a continuously-illuminated backlight or it is operating at a frequency higher than what the brain can perceive. The flicker can be reduced or eliminated by setting the display to full brightness, though this has a negative impact on image quality and battery life due to increased power consumption.


For a non-ELP backlight to produce even lighting, which is critical for displays, the light is first passed through a lightguide - a specially-designed layer of plastic that diffuses the light through a series of unevenly-spaced bumps. The density of bumps increases further away from the light source according to a diffusion equation. The diffused light then travels to either side of the diffuser; the front faces the actual LCD panel, the back has a reflector to guide otherwise wasted light back toward the LCD panel. The reflector is sometimes made of aluminum foil, sometimes merely a white-pigmented surface or, as in the 3M Vikuiti ESR, consists of hundreds of polymer layers of alternating low and high refractive index. Between the lightguide and the LCD panel is usually placed a reflective polarizer film which vastly increases efficiency by repeatedly reflecting any unpolarized light back, which would otherwise be absorbed by the LCD's rear polarizer.


External links

  • Animated tutorial of LCD and Backlight technology by 3M
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.