World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0001585019
Reproduction Date:

Title: Lagerstatten  
Author: World Heritage Encyclopedia
Language: English
Subject: Ediacara biota, Mene oblonga, Kushlukia, Charles Emerson Beecher
Publisher: World Heritage Encyclopedia



A Lagerstätte (German: [ˈlaːɡɐʃtɛtə], from Lager 'storage' Stätte 'place'; plural Lagerstätten) is a sedimentary deposit that exhibits extraordinary fossils with exceptional preservation—sometimes including preserved soft tissues. These formations may have resulted from carcass burial in an anoxic environment with minimal bacteria, thus delaying decomposition. Lagerstätten span geological time from the Neoproterozoic era to the present. Worldwide, some of the best examples of near-perfect fossilization are the Cambrian Maotianshan shales and Burgess Shale, the Devonian Hunsrück Slates, the Carboniferous Mazon Creek, the Jurassic Solnhofen limestone, and the Cretaceous Yixian Formation localities.


Palaeontologists distinguish two kinds:[1]

  1. Konzentrat-Lagerstätten (concentration Lagerstätten) are deposits with a particular "concentration" of disarticulated organic hard parts, such as a bone bed. These Lagerstätten are less spectacular than the more famous Konservat-Lagerstätten. Their contents invariably display a large degree of time averaging, as the accumulation of bones in the absence of other sediment takes some time. Deposits with a high concentration of fossils that represent an in situ community, such as reefs or oyster beds, are not considered Lagerstätten.
  2. Konservat-Lagerstätten (conservation Lagerstätten) are deposits known for the exceptional preservation of fossilized organisms or traces. The individual taphonomy of the fossils varies with the sites. Conservation Lagerstätten are crucial in providing answers to important moments in the history and evolution of life. For example, the Burgess Shale of British Columbia is associated with the Cambrian explosion, and the Solnhofen limestone with the earliest known bird, Archaeopteryx.


Konservat-Lagerstätten preserve lightly sclerotized and soft-bodied organisms or traces of organisms that are not otherwise preserved in the usual shelly and bony fossil record; thus, they offer more complete records of ancient biodiversity and behavior and enable some reconstruction of the palaeoecology of ancient aquatic communities. In 1986, Simon Conway Morris calculated only about 14% of genera in the Burgess Shale had possessed biomineralized tissues in life. The affinities of the shelly elements of conodonts were mysterious until the associated soft tissues were discovered near Edinburgh, Scotland, in the Granton Lower Oil Shale of the Carboniferous.[2] Information from the broader range of organisms found in Lagerstätten have contributed to recent phylogenetic reconstructions of some major metazoan groups. Lagerstatten seem to be temporally autocorrelated, perhaps because global environmental factors such as climate might affect their deposition.[3]

A number of taphonomic pathways may produce Lagerstätten. The following is an incomplete list:

Important Lagerstätten

The world's major Lagerstätten include:

    Bitter Springs 1000–850 Mya South Australia
    Doushantuo Formation 600–555 Mya Guizhou Province, China
    Mistaken Point 565 Mya Newfoundland, Canada
    Ediacara Hills 550-545? Mya South Australia
    Maotianshan Shales (Chengjiang) 525 Mya Yunnan Province, China
    Sirius Passet 518 Mya Greenland
    Emu Bay Shale 517 Mya South Australia
    Kaili Formation 513–501 Mya Guizhou province, south-west China
    Blackberry Hill ~510–500 Mya Central Wisconsin, US
    Wheeler Shale (House Range) 507 Mya Western Utah, US
    Burgess Shale 505 Mya British Columbia, Canada
    Kinnekulle Orsten and Alum Shale 500 Mya Sweden
    Öland Orste and Alum Shale 500 Mya Sweden
    Fezouata Formation about 485 Mya Draa Valley, Morocco
    Beecher's Trilobite Bed 460? Mya New York, US
    Walcott-Rust Quarry about 455? Mya New York, US
    Soom shale 450? Mya South Africa
    Wenlock Series ~425 Mya England, UK
    Rhynie chert 400 Mya Scotland, UK
    Hunsrück Slates (Bundenbach) 390 Mya Rheinland-Pfalz, Germany
    Gogo Formation 380 Mya (Frasnian) Western Australia
    Miguasha National Park 370 Mya Québec, Canada
    Canowindra, New South Wales 360 Mya Australia
    Bear Gulch Limestone 320 Mya Montana, US
    Joggins Fossil Cliffs 315 Mya Nova Scotia, Canada
    Mazon Creek 310 Mya Illinois, US
    Montceau-les-Mines 300 Mya France
    Hamilton Quarry 300 Mya Kansas, US
    Mangrullo Formation[4] about 285-275 Mya (Artinskian) Uruguay
    Madygen Formation 230 Mya Kyrgyzstan
    Ghost Ranch 205 Mya New Mexico, US
    Holzmaden/Posidonia Shale 180 Mya Württemberg, Germany
    Mesa Chelonia[5] 164.6 Mya Shanshan County, China
    La Voulte-sur-Rhône 160 Mya Ardèche, France
    Karabastau Formation 155.7 Mya Kazakhstan
    Solnhofen Limestone 145 Mya Bavaria, Germany
    Canjuers Limestone 145 Mya France
    Las Hoyas about 125 Mya (Barremian) Cuenca, Spain
    Yixian Formation about 125-121 Mya Liaoning, China
    Xiagou Formation about 120-115? Mya (mid-Apt.) Gansu, China
    Crato Formation about 117 Mya (Aptian) northeast Brazil
    Haqel/Hadjula/al-Nammoura about 95 Mya Lebanon
    Santana Formation 108-92 Mya Brazil
    Smoky Hill Chalk 87-82 Mya Kansas and Nebraska, US
    Ingersoll Shale 85 Mya Alabama, US
    Auca Mahuevo 80 Mya Patagonia, Argentina
    Zhucheng 65 Mya Shandong, China
    Fur Formation 55-53 Mya Fur, Denmark
    London Clay 54-48 Mya England, UK
    McAbee Fossil Beds 52.9 ± 0.83 Mya British Columbia, Canada
    Green River Formation 50 Mya Colorado/Utah/Wyoming, US
    Monte Bolca 49 Mya Italy
    Messel Oil Shale 49 Mya Hessen, Germany
    Dominican amber 30-10 Mya Dominican Republic
    Riversleigh 25-15 Mya Queensland, Australia
    Clarkia fossil beds 20-17 Mya Idaho, US
    Barstow Formation 19-13.4 Mya California, US
    Ashfall Fossil Beds 12–13? Mya Nebraska, US
    Mammoth Site 26 Kya South Dakota, US
    Rancho La Brea Tar Pits 40-12 Kya California, US

See also


Further reading

  • Penney, D.(ed.) 2010. Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scienfic Press, Manchester, 304 pp.
  • – A catalogue of sites of exceptional fossil preservation produced by MSc palaeobiology students at University of Bristol's Department of Earth Sciences.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.