World Library  
Flag as Inappropriate
Email this Article

Messaging pattern

In software architecture, a messaging pattern is a network-oriented architectural pattern which describes how two different parts of a message passing system connect and communicate with each other.

In telecommunications, a message exchange pattern (MEP) describes the pattern of messages required by a communications protocol to establish or use a communication channel. There are two major message exchange patterns — a request–response pattern, and a one-way pattern. For example, HTTP is a request–response pattern protocol, and UDP is a one-way pattern.[1]


  • SOAP 1
  • ØMQ 2
  • See also 3
  • References 4
  • External links 5


The term "Message Exchange Pattern" has a specific meaning within the Simple Object Access protocol (SOAP).[2][3] SOAP MEP types include:

  1. In-Only: This is equivalent to one-way. A standard one-way messaging exchange where the consumer sends a message to the provider that provides only a status response.
  2. Robust In-Only: This pattern is for reliable one-way message exchanges. The consumer initiates with a message to which the provider responds with status. If the response is a status, the exchange is complete, but if the response is a fault, the consumer must respond with a status.
  3. In-Out: This is equivalent to request–response. A standard two-way message exchange where the consumer initiates with a message, the provider responds with a message or fault and the consumer responds with a status.
  4. In Optional-Out: A standard two-way message exchange where the provider's response is optional.
  5. Out-Only: The reverse of In-Only. It primarily supports event notification. It cannot trigger a fault message.
  6. Robust Out-Only: similar to the out-only pattern, except it can trigger a fault message. The outbound message initiates the transmission.
  7. Out-In: The reverse of In-Out. The provider transmits the request and initiates the exchange.
  8. Out-Optional-In: The reverse of In-Optional-Out. The service produces an outbound message. The incoming message is optional ("Optional-in").


The ØMQ message queueing library provides so-called sockets (a kind of generalization over the traditional IP and Unix sockets) which require indicating a messaging pattern to be used, and are optimized for each pattern. The basic ØMQ patterns are:[4]

  • Request–reply connects a set of clients to a set of services. This is a remote procedure call and task distribution pattern.
  • Publish–subscribe connects a set of publishers to a set of subscribers. This is a data distribution pattern.
  • Push–pull connects nodes in a fan-out / fan-in pattern that can have multiple steps, and loops. This is a parallel task distribution and collection pattern.
  • Exclusive pair connects two sockets in an exclusive pair. This is a low-level pattern for specific, advanced use cases.

Each pattern defines a particular network topology. Request-reply defines so-called "service bus", publish-subscribe defines "data distribution tree", push-pull defines "parallelised pipeline". All the patterns are deliberately designed in such a way as to be infinitely scalable and thus usable on Internet scale.[5]

See also


  1. ^ Erl, Thomas (2005). Service Oriented Architecture: Concepts, Technology, and Design. Indiana: Pearson Education. p. 171.  
  2. ^ SOAP MEPs in SOAP W3C Recommendation v1.2
  3. ^ Web Services Description Language (WSDL) Version 2.0: Additional MEPs
  4. ^ ØMQ User Guide
  5. ^ Scalability Layer Hits the Internet Stack

External links

  • Messaging Patterns in Service-Oriented Architecture
  • Enterprise Integration Patterns - Pattern Catalog
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.