World Library  
Flag as Inappropriate
Email this Article

Monocrystalline silicon

Article Id: WHEBN0018526033
Reproduction Date:

Title: Monocrystalline silicon  
Author: World Heritage Encyclopedia
Language: English
Subject: Crystalline silicon, Polycrystalline silicon, Integrated circuit, Silicon, Wafering
Publisher: World Heritage Encyclopedia

Monocrystalline silicon

Monocrystalline silicon (or "single-crystal silicon", "single-crystal Si", "mono c-Si", or just mono-Si) is the base material for silicon chips used in virtually all electronic equipment today. Mono-Si also serves as photovoltaic, light-absorbing material in the manufacture of solar cells.

It consists of silicon in which the crystal lattice of the entire solid is continuous, unbroken to its edges, and free of any grain boundaries. Mono-Si can be prepared intrinsic, consisting only of exceedingly pure silicon, or doped, containing very small quantities of other elements added to change its semiconducting properties. Most silicon monocrystals are grown by the Czochralski process into ingots of up to 2 meters in length and weighing several hundred kilogrammes. These cylinders are then sliced into thin wafers of a few hundred microns for further processing.

Single-crystal silicon is perhaps the most important technological material of the last few decades—the "silicon era",[1] because its availability at an affordable cost has been essential for the development of the electronic devices on which the present day electronic and informatic revolution is based.

Monocrystalline silicon differs from other allotropic forms, such as the non-crystalline amorphous silicon—used in thin-film solar cells, and polycrystalline silicon, that consists of small crystals, also known as crystallites.

Mono-Si in electronics

The monocrystalline form is used in the semiconductor device fabrication since grain boundaries would bring discontinuities and favor imperfections in the microstructure of silicon, such as impurities and crystallographic defects, which can have significant effects on the local electronic properties of the material. On the scale that devices operate on, these imperfections would have a significant impact on the functionality and reliability of the devices. Without the crystalline perfection, it would be virtually impossible to build Very Large-Scale Integration (VLSI) devices (figure below), in which millions (up to billions, circa 2005[2]) of transistor-based circuits, all of which must reliably be working, are combined into a single chip to get e.g. a microprocessor. Therefore, the electronics industry has invested heavily in facilities to produce large single crystals of silicon.

Mono-Si in solar cells

Global market-share in terms of annual production by PV technology since 1990

Monocrystalline silicon is used in the manufacturing of high performance solar cells. Since, however, solar cells are less demanding than microelectronics for as concerns structural imperfections, monocrystaline solar grade (Sog-Si) is often used.


In 2013, monocrystalline solar cells had a market-share of 36 percent, that translated into the production of 12,600 megawatts of photovoltaic capacity,[3] and ranked second behind the somewhat cheaper sister-technology of polycrystalline silicon.[4]


Lab efficiencies of 25.0 percent for mono-Si cells are the highest in the commercial PV market, ahead of polysilicon with 20.4 percent and all established thin-film technologies namely, CIGS cells (19.8%), CdTe cells (19.6%), and a-Si cells (13.4%).[5]

Solar module efficiencies—which are always lower than those of their corresponding cells—crossed the 20 percent mark for mono-Si in 2012; an improvement of 5.5 percent over a period of ten years. The thickness of a silicon waver used to produce a solar cell also decreased significantly, requiring less raw material and therefore less energy for its manufacture. Increased efficiency combined with economic usage of resources and materials was the main driver for the price decline over the last decade.[6]


See also


  1. ^ W.Heywang, K.H.Zaininger, Silicon: the semiconductor material, in Silicon: evolution and future of a technology, P.Siffert, E.F.Krimmel eds., Springer Verlag, 2004.
  2. ^ Peter Clarke, Intel enters billion-transistor processor era, EE Times, 14 October 2005
  3. ^ Photovoltaics Report, Fraunhofer ISE, July 28, 2014, pages 18,19
  4. ^ S.R.Wenham, M.A.Green, M.E.Watt., R.Corkish, Applied Photovoltaics, Earthscan, 2007, Chapt. 2
  5. ^ Photovoltaics Report, Fraunhofer ISE, July 28, 2014, pages 24, 25
  6. ^ Photovoltaics Report, Fraunhofer ISE, July 28, 2014, pages 23 and 29
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.