World Library  
Flag as Inappropriate
Email this Article

Wood's glass

Article Id: WHEBN0004264467
Reproduction Date:

Title: Wood's glass  
Author: World Heritage Encyclopedia
Language: English
Subject: Inter Glass, Macor, CorningWare, Cranberry glass, W. E. S. Turner
Collection: American Inventions, Glass Compositions, Glass Trademarks and Brands, Optical Filters
Publisher: World Heritage Encyclopedia

Wood's glass

Two "black light" ultraviolet fluorescent tubes. The glass envelopes show the dark blue color of Wood's glass, although these modern tubes actually use another optical filtering material.

Wood's glass is an optical filter glass invented in 1903 by American physicist Robert Williams Wood (1868–1955) which allows ultraviolet and infrared light to pass through while blocking most visible light.[1] It was developed as a light filter used in communications during World War I.[2][3] His "invisible radiation" technique worked both in infrared daylight communication and ultraviolet night communications. His glass filter removed the visible components of a light beam, leaving only the 'invisible radiation' as a signal beam. Wood's glass has been commonly used to form the envelope for fluorescent and incandescent ultraviolet bulbs ("black lights"). In recent years, due to its disadvantages, other filter materials have largely replaced it (see below).[4]


  • Composition 1
  • Properties and uses 2
  • See also 3
  • References 4


Wood's glass is special barium-sodium-silicate glass incorporating about 9% nickel oxide. It is a very deep violet-blue glass, opaque to all visible light rays except longest red and shortest violet. It is quite transparent in the violet/ultraviolet in a band between 320 and 400 nanometres with a peak at 365 nanometres, and a fairly broad range of infrared and the longest, least visible red wavelengths.

Some sources erroneously state presence of cobalt(II) oxide in Wood's glass.

Properties and uses

Wood's glass has lower mechanical strength and higher thermal expansion than commonly used glasses, making it more vulnerable to thermal shocks and mechanical damage.

The nickel and barium oxides are also chemically reactive, with tendency to slowly form a layer of hydroxides and carbonates in contact with atmospheric moisture and carbon dioxide.

The susceptibility to thermal shock makes manufacture of hermetically sealed glass bulbs difficult and costly, therefore most contemporary "black light" bulbs are made of structurally more suitable glass with only a layer of an UV filtering enamel on its surface; such bulbs however pass much more visible light, appearing brighter to the eye.

Due to manufacturing difficulties, Wood's glass is now more commonly used in standalone flat or dome-shaped filters, instead of being the material of the light bulb.

Bulbs made of Wood's glass are potentially hazardous in comparison with the ones made of enameled glass, as due to reduced visible light throughput it is easy for the observer to be exposed to unsafe levels of UV light as the source looks less bright.

With prolonged exposure to ultraviolet radiation, Wood's glass undergoes solarization, gradually losing transparency for UV.

Photographic filters for ultraviolet photography, notably the Kodak Wratten 18A and 18B, are based on Wood's glass.[5]

See also


  1. ^ Williams, Robin; Gigi Williams (2002). "Wood, Professor Robert Williams". Pioneers of Invisible Radiation Photography. RMIT Online University, Melbourne, AU. Retrieved January 16, 2013. 
  2. ^ "Invisible Signals". Proc. of the United States Naval Institute (Annapolis, Maryland: U.S. Naval Institute) 45 (10): 1794–1796. October 1919. Retrieved March 27, 2013. 
  3. ^ Rodgers, John, Ed. (1920). "Secret Signaling by Light Rays". American Jour. of Science (New Haven: Kline Geology Laboratory, Yale Univ.) 49: 214–216. Retrieved March 27, 2013. 
  4. ^ "[A] BLB [bulb] has a thin coating of a visible wavelength (VIS) filter generally applied to the inner wall of the bulb." "Part I:Lighting and its effects on color-grading diamonds" (PPT). AGA Task Force on Lighting and Color-Grading. Accredited Gemologists Association. February 3, 2010. Retrieved March 27, 2013. , p.
  5. ^ "Reflected Ultraviolet Photography". Medical and Scientific Photography.  
  • R.W. Wood. "Secret communications concerning light rays". Journal of Physiology 1919, 5e serie: t IX
  • J. Margarot & P. Deveze. "Aspect de quelques dermatoses lumiere ultraparaviolette. Note preliminaire". Bulletin de la Société des sciences médicales et biologiques de Montpellier 1925, 6: 375–378.
  • Robin Williams & Gigi Williams. "Pioneers of Invisible Radiation Photography"

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.