World Library  
Flag as Inappropriate
Email this Article

Abelian category

Article Id: WHEBN0000045063
Reproduction Date:

Title: Abelian category  
Author: World Heritage Encyclopedia
Language: English
Subject: Homological algebra, Niels Henrik Abel, Category theory/Selected article, Category theory, Category (mathematics)
Collection: Additive Categories, Homological Algebra, Niels Henrik Abel
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Abelian category

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in a tentative attempt to unify several cohomology theories by Alexander Grothendieck. Abelian categories are very stable categories, for example they are regular and they satisfy the snake lemma. The class of Abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an Abelian category, or the category of functors from a small category to an Abelian category are Abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

Contents

  • Definitions 1
  • Examples 2
  • Grothendieck's axioms 3
  • Elementary properties 4
  • Related concepts 5
  • History 6
  • References 7

Definitions

A category is abelian if

This definition is equivalent[1] to the following "piecemeal" definition:

Note that the enriched structure on hom-sets is a consequence of the three axioms of the first definition. This highlights the foundational relevance of the category of Abelian groups in the theory and its canonical nature.

The concept of exact sequence arises naturally in this setting, and it turns out that exact functors, i.e. the functors preserving exact sequences in various senses, are the relevant functors between Abelian categories. This exactness concept has been axiomatized in the theory of exact categories, forming a very special case of regular categories.

Examples

Grothendieck's axioms

In his Tōhoku article, Grothendieck listed four additional axioms (and their duals) that an abelian category A might satisfy. These axioms are still in common use to this day. They are the following:

  • AB3) For every indexed family (Ai) of objects of A, the coproduct *Ai exists in A (i.e. A is cocomplete).
  • AB4) A satisfies AB3), and the coproduct of a family of monomorphisms is a monomorphism.
  • AB5) A satisfies AB3), and filtered colimits of exact sequences are exact.

and their duals

  • AB3*) For every indexed family (Ai) of objects of A, the product PAi exists in A (i.e. A is complete).
  • AB4*) A satisfies AB3*), and the product of a family of epimorphisms is an epimorphism.
  • AB5*) A satisfies AB3*), and filtered limits of exact sequences are exact.

Axioms AB1) and AB2) were also given. They are what make an additive category abelian. Specifically:

  • AB1) Every morphism has a kernel and a cokernel.
  • AB2) For every morphism f, the canonical morphism from coim f to im f is an isomorphism.

Grothendieck also gave axioms AB6) and AB6*).

Elementary properties

Given any pair A, B of objects in an abelian category, there is a special zero morphism from A to B. This can be defined as the zero element of the hom-set Hom(A,B), since this is an abelian group. Alternatively, it can be defined as the unique composition A -> 0 -> B, where 0 is the zero object of the abelian category.

In an abelian category, every morphism f can be written as the composition of an epimorphism followed by a monomorphism. This epimorphism is called the coimage of f, while the monomorphism is called the image of f.

Subobjects and quotient objects are well-behaved in abelian categories. For example, the poset of subobjects of any given object A is a bounded lattice.

Every abelian category A is a module over the monoidal category of finitely generated abelian groups; that is, we can form a tensor product of a finitely generated abelian group G and any object A of A. The abelian category is also a comodule; Hom(G,A) can be interpreted as an object of A. If A is complete, then we can remove the requirement that G be finitely generated; most generally, we can form finitary enriched limits in A.

Related concepts

Abelian categories are the most general setting for homological algebra. All of the constructions used in that field are relevant, such as exact sequences, and especially short exact sequences, and derived functors. Important theorems that apply in all abelian categories include the five lemma (and the short five lemma as a special case), as well as the snake lemma (and the nine lemma as a special case).

History

Abelian categories were introduced by Buchsbaum (1955) (under the name of "exact category") and Grothendieck (1957) in order to unify various cohomology theories. At the time, there was a cohomology theory for sheaves, and a cohomology theory for groups. The two were defined differently, but they had similar properties. In fact, much of category theory was developed as a language to study these similarities. Grothendieck unified the two theories: they both arise as derived functors on abelian categories; the abelian category of sheaves of abelian groups on a topological space, and the abelian category of G-modules for a given group G.

References

  1. ^ Peter Freyd, Abelian Categories
  2. ^ Handbook of categorical algebra, vol. 2, F. Borceux
  • Buchsbaum, D. A. (1955), "Exact categories and duality",  
  •  
  •  
  • Mitchell, Barry (1965), Theory of Categories, Boston, MA:  
  • Popescu, N. (1973), Abelian categories with applications to rings and modules, Boston, MA:  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.