World Library  
Flag as Inappropriate
Email this Article

Air traffic controller


Air traffic controller

Air Traffic Controller
Military air traffic controllers in a control tower
Occupation type
Activity sectors
Competencies Excellent short-term memory and situational awareness, good mathematical skills, quick and assertive decision making abilities, ability to perform under stress
Education required
Certification by aviation authority (e.g. FAA) under ICAO rules and regulations. Majority from military and/or four-year degree CTI schools

Air traffic controllers are people trained to maintain the safe, orderly and expeditious flow of air traffic in the global air traffic control system. The position of air traffic controller is one that requires highly specialized knowledge, skills, and abilities. Controllers apply separation rules to keep aircraft at a safe distance from each other in their area of responsibility and move all aircraft safely and efficiently through their assigned sector of airspace, as well as on the ground. Because controllers have an incredibly large responsibility while on duty (often in aviation, "on position") and make countless split-second decisions on a daily basis, the ATC profession is consistently regarded around the world as one of the most mentally challenging careers, and can be notoriously stressful depending on many variables (equipment, configurations, weather, traffic volume, human factors, etc.). Many controllers, however, would cite high salaries,[1][2][3] and a very large, unique, and privileged degree of autonomy as major advantages of their jobs.

Although the media in the United States frequently refers to them as air controllers, or flight controllers, most air traffic professionals use the term air traffic controllers. They are also called air traffic control officers (ATCOs), air traffic control specialists, or simply controllers. For a more detailed article on the job itself, please see air traffic control.


  • Features of the job 1
    • Core skills of a controller 1.1
    • Area or en route 1.2
    • Aerodrome or Tower 1.3
    • Civilian/military - public/private 1.4
    • Education 1.5
    • Work patterns 1.6
    • Age restrictions 1.7
    • Stress 1.8
    • Computerization and the future 1.9
  • See also 2
  • References 3
  • External links 4

Features of the job

Core skills of a controller

Air traffic controllers are generally individuals who are well organized, are quick with numeric computations and mathematics, have assertive and firm decision making skills, are able to maintain 'their cool' and composure under pressure, and possess an excellent short-term memory. Through numerous studies throughout the decades, it has been successfully demonstrated that traffic controllers usually have a superior visual memory, and in addition, studies have shown that air traffic controllers generally have a degree of situational awareness that is significantly better than the population average. In 'games' involving short-term memory, peer-induced stresses, and real-time risk analysis, air traffic control specialists scored better than the control group in every experiment. Excellent hearing andspeaking skills are a requirement, and trainees undergo rigorous physical and psychological testing.

Moreover, the position of the air traffic controller requires some of the strictest medical and mental requirements for any profession in the world; conditions such as diabetes, epilepsy, heart disease, and many mental disorders (e.g., clinical depression, ADHD, bipolar disorder, a history of drug abuse) almost always disqualify people from obtaining medical certification from the overseeing aviation authority. Almost universally, controllers are subjected to rigid medical and mental exams to ensure safety in the air traffic system. In the United States, for example, all air traffic controllers are required to take and pass a Minnesota Multiphasic Personality Inventory before being hired by the Federal Aviation Administration. Conditions such as hypertension, while not disqualifying, are taken seriously and must be monitored with medical examinations by certified doctors. Controllers must take precautions to remain healthy and avoid certain medications that are banned for them. Many drugs approved by the U.S. Food and Drug Administration (FDA) such as SSRI antidepressants and benzodiazepines, are banned. Almost universally, trainee controllers begin work in their twenties and retire in their fifties. This is due to an FAA requirement that trainees begin their training at the Academy no later than their 31st birthday, and face mandatory retirement at age 56.[4]

Air traffic controller at Amsterdam Airport Schiphol, Netherlands

Communication is a vital part of the job: controllers are trained to focus on the exact words that pilots and other controllers speak, because a single misunderstanding about altitude levels or runway numbers can have tragic consequences. Controllers communicate with the pilots of aircraft using a push-to-talk radiotelephony system which has many attendant issues, such as the fact that only one transmission can be made on a frequency at a time and can either merge or block each other and become unintelligible.

Although local languages are used in ATC communications, the default language of aviation worldwide is English. Controllers who do not speak English as a first language are generally expected to show a certain minimum level of competency with the language.

Teamwork plays a major role in a controller’s job, not only with other controllers and air traffic staff, but with pilots, engineers and managers.

Area or en route

Area controllers are responsible for the safety of aircraft at higher altitudes, in the en route phase of their flight. In most nations they are known as "area" or "en route" controllers. Area controllers are responsible for specific sectors of 3D blocks of airspace with defined dimensions. Each sector is managed by at least one Area controller. This can be done with or without the use of radar: radar allows a sector to handle much more traffic; however, procedural control is used in many areas where traffic levels do not justify radar or the installation of radar is not feasible. In the United States, En-Route controllers work at Air Route Traffic Control Centers or ARTCCs. In other countries, area controllers work in Area Control Centers, controlling high-level en-route aircraft, or Terminal Control Centers, which control aircraft at climbing and descending altitudes from major groups of the airports.

Aerodrome or Tower

Aerodrome or Tower controllers control aircraft within the immediate vicinity of the airport and use visual observation from the airport tower. The tower's airspace is often a 5-nautical-mile (9.3 km) radius around the airport, but can vary greatly in size and shape depending on traffic configuration and volume.

The tower positions are typically split into many different positions such as Flight Data/Clearance Delivery, Ground Control, and Local Control (known as Tower by the pilots); at busier facilities, a limited radar approach control position may be needed.

The roles of the positions are;

  • Flight Data/Clearance Delivery: Issues IFR flight plan clearances, obtains squawk codes for vfr aircraft, helps with coordination for GC/LC, and cuts the ATIS (weather). FD/CD is commonly known in the profession as the secretary of the tower.
  • Ground: Issues taxi instructions and authorizes aircraft/vehicle movements on the airport except the active runway(s); controllers are not responsible for aircraft movement on ramps or other designated non-movement areas.
  • Local (Tower): Issues takeoff and landing instructions/clearances and authorizes aircraft/vehicle movements on or across runways.
  • Approach: Issues instructions to aircraft who are intending to land at the airport. This involves vectoring aircraft in a safe, orderly, and expeditious manner and, if needed, stacking the aircraft at different holding altitudes.

Civilian/military - public/private

A military air traffic controller works approach control in Carrier Air Traffic Control Center (CATTC) aboard the Nimitz class aircraft carrier USS Abraham Lincoln (CVN 72).
Civilian air traffic controllers, Memphis International Airport, 1962

Most countries' armed forces employ air traffic controllers, often in most if not all branches of the forces. Although actual terms vary from country to country, controllers are usually enlisted.

In some countries, all air traffic control is performed by the military.[5] In other countries, military controllers are responsible solely for military airspace and airbases; civilian controllers maintain airspace for civilian traffic and civilian airports. Historically, in most countries, this was part of the government and controllers were civil servants. However, many countries have partly or wholly privatized their air traffic control systems; others are looking to do the same.


Civilian Air Traffic Controllers' licensing is standardized by international agreement through ICAO. Many countries have Air Traffic Control schools, academies or colleges, often operated by the incumbent provider of air traffic services in that country, but sometimes privately. These institutions are structured to provide training to individuals without any prior air traffic control experience. At the completion of academic training, the graduating student will be granted an Air Traffic Control license, which will include one or more Ratings. These are sub-qualifications denoting the air traffic control discipline or disciplines in which the person has been trained. ICAO defines five such ratings: Area (procedural), Area Radar, Approach (procedural), Approach Radar and Aerodrome. In the United States, controllers may train in several similar specialties: Tower, Ground-Controlled Approach (GCA), Terminal Radar Control, or En route Control (both radar and non-radar). This phase of training takes between 6 months and several years.

Whenever an air traffic controller is posted to a new unit or starts work on a new sector within a particular unit, they must undergo a period of training regarding the procedures peculiar to that particular unit and/or sector. The majority of this training is done in a live position controlling real aircraft and is termed On the Job Training (OJT), with a fully qualified and trained mentor or On the Job Training Instructor (OJTI) also 'plugged into' the position to give guidance and ready to take over in a second should it become necessary. The length of this phase of training varies from a matter of months to years, depending on the complexity of the sector.

Only once a person has passed all these training stages they will be allowed to control a position alone.

Work patterns

Typically, controllers work "on position" for 90 to 120 minutes followed by a 30-minute break. Except at quieter airports, Air Traffic Control is a 24-hour, 365-day-a-year job where controllers usually work rotating shifts, including nights, weekends and public holidays. These are usually set 28 days in advance. In many countries, the structure of controllers' shift patterns is regulated to allow for adequate time off. In the UK the most common pattern is two mornings, two late afternoons and two evenings/nights followed by four-day break.[6]

Age restrictions

If employed by the FAA, the latest one can start training is usually age 30, and retirement is mandatory at 56 years of age. However, retired military air traffic controllers may qualify for appointment after reaching 31 years of age.[7]

With NATS, the minimum age to start the application and training is 18 while the mandatory retirement age is 60.[8] If an 18-year-old joins and is successful then they will have to be posted to an Area course which will ensure they are 21 years old on graduation, thus old enough to hold a radar licence.[6]


Many countries regulate work hours to ensure that controllers are able to remain focused and effective. Research has shown that when controllers remain ‘in position’ for more than two hours without a break, performance can deteriorate rapidly, even at low traffic levels.[9][10][11] Many national regulations therefore require breaks at least every two hours. A "deal" is the term used for any situation where an airplane comes inappropriately close (either horizontally or vertically) to another plane or to a ground vehicle. Deals can also occur between aircraft and airspace, if authorization is not granted.

Computerization and the future

Despite years of effort and billions of dollars spent on computer software designed to assist air traffic control, success has been largely limited to improving the tools at the disposal of the controllers, such as computer-enhanced radar. It is likely that in the next few decades, future technology will make the controller more of a systems manager overseeing decisions made by automated systems and manually intervening to resolve situations not handled well by the computers, rather than being automated out of existence altogether.

However, there are problems envisaged with technology that normally takes the controller out of the decision loop but requires the controller to step back in to control exceptional situations: air traffic control is a skill that has to be kept current by regular practice. This in itself may prove to be the largest stumbling block to the introduction of highly automated air traffic control systems.

User acceptance or willingness to use such technology is another important consideration air service providers need to consider prior to implementing any new technology. In a recent study with over 500 air traffic controllers from around the world, Bekier and colleagues[12] found that once the locus of decision-making shifts from the air traffic controller, support for the technology dramatically decreases. Unsurprisingly, they also found that air traffic controllers enjoy the core tasks of their role: namely, conflict detection and resolution.[13]

See also


  1. ^ "Air Traffic Controllers". Occupational Outlook Handbook (2014-15 ed.). Bureau of Labor Statistics, U.S. Department of Labor. Archived from the original on 13 December 2014. Retrieved 13 December 2014. The median annual wage for air traffic controllers was $122,530 in May 2012. 
  2. ^ "Air Transport Professionals". Job Outlook: An Australian Government Initiative. Canberra, Australia: Department of Employment, Australian Government. Archived from the original on 13 December 2014. Retrieved 13 December 2014. ...graph shows median weekly earnings for the occupation compared with the median across all occupations. 
  3. ^ "Air traffic controller: Job Information". National Careers Service. Skills Funding Agency on behalf of the Department for Business, Innovation and Skills, Government of U.K. Archived from the original on 13 December 2014. Retrieved 13 December 2014. ...chart shows the median, or middle, annual income figure for full-time workers in this sector compared to the national median figure for all sectors. 
  4. ^ Clark, Anders (17 June 2015). "FAA Hiring Scandal Follow Up". Footnote 1. Disciples of Flight. Retrieved 24 September 2015.
  5. ^ "Air traffic control still causing disruption in Brazil". Centre for Asia Pacific Aviation (CAPA). 11 September 2008. Archived from the original on 13 December 2014. Retrieved 13 December 2014. Besides Brazil, the only nations in which the military retains complete control of civilian traffic are Paraguay and Uganda. 
  6. ^ a b "FAQs - Jobs and careers at NATS". Archived from the original on 2012-02-27. 
  7. ^ "HRPM EMP-1.20 Maximum Entry Age for Air Traffic Control Specialists".  
  8. ^ Charlton, John (2009-02-27). "Air traffic control age limit found to be ageist".  
  9. ^ Hopkin, V. David (5 September 1995). "17.7 Work-rest cycles". Human Factors In Air Traffic Control. CRC Press. pp. 366–367.  
  10. ^ Costa, Giovanni (1991). Wise, J. A.; Hopkin, V. D.; Smith, M. L., eds. "Shiftwork and circadian variations of vigilance and performance". Automation and systems issues in air traffic control. NATO ASI Series (Berlin, Germany: Springer-Verlag) F73: 267–280. 
  11. ^ Folkard, S.; Rosen, S. D. (1990). "Circadian performance rhythms: some practical and theoretical implications [and discussion]". Philosophical Transactions of the Royal Society of London. B, Biological Sciences 327 (1241): 543–553. 
  12. ^ Bekier, M., Molesworth, B. R. C., & Williamson, A. (2012). Tipping point: the narrow path between automation acceptance and rejection in air traffic management. Safety Science, 50(2), 259-265.
  13. ^ Bekier, M., Molesworth, B. R. C., & Williamson, A. (2011). Why air traffic controllers accept or refuse automated technology. Paper presented at the 16th International Symposium on Aviation Psychology, Dayton, OH.

External links

  • Air Traffic Control Association
  • Unique Aviation Career as an Air Traffic Controller, by James Wynbrandt, Flying (magazine)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.