World Library  
Flag as Inappropriate
Email this Article

Ant robotics

Article Id: WHEBN0024259380
Reproduction Date:

Title: Ant robotics  
Author: World Heritage Encyclopedia
Language: English
Subject: Swarm robotics, Ant, Multi-agent systems, Swarming, Bat algorithm
Collection: American Inventions, Multi-Agent Systems, Multi-Robot Systems
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Ant robotics

Ant robotics is a special case of swarm robotics. Swarm robots are simple (and hopefully, therefore cheap) robots with limited sensing and computational capabilities. This makes it feasible to deploy teams of swarm robots and take advantage of the resulting fault tolerance and parallelism. Swarm robots cannot use conventional planning methods due to their limited sensing and computational capabilities. Thus, their behavior is often driven by local interactions. Ant robots are swarm robots that can communicate via markings, similar to ants that lay and follow pheromone trails. Some ant robots use long-lasting trails (either regular trails of a chemical substance[1] or smart trails of transceivers[2]), others use short-lasting trails (heat,[3] odor,[4] alcohol,[5] and/or light[6]), and others even use virtual trails.[7]

Contents

  • Invention 1
  • Background 2
  • See also 3
  • References 4
  • External links 5

Invention

In 1991, American electrical engineer James McLurkin was the first to conceptualize the idea of "robot ants" while working at the MIT Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. The robots consisted of sensors, infrared emitters, and communication systems capable of detecting objects in their path. McLurkin's invention was through studying the behavior of real ants in ant colonies and keeping ant farms as a basis for his programming. Through this examination, he could better understand how insects structured their workloads in order to produce a viable and working prototype of robotic ants.[8]

Background

Researchers have developed ant robot hardware and software and demonstrated, both in simulation and on physical robots, that single ant robots or teams of ant robots solve robot-navigation tasks (such as path following[4] and terrain coverage[1][6]) robustly and efficiently. For example, trails coordinate the ant robots via implicit communication and provide an alternative to probabilistic reasoning for solving the simultaneous localization and mapping problem.

Researchers have also developed a theoretical foundation for ant robotics, based on ideas from real-time heuristic search, stochastic analysis and graph theory.[9] Recently, it was shown that a single ant robot (modeled as finite state machine) can simulate the execution of any arbitrary Turing machine.[10][11] This proved that a single ant robot, using pheromones, can execute arbitrarily complex single-robot algorithms. However, the result unfortunately does not hold for N robots.

See also

References

  1. ^ a b J. Svennebring and S. Koenig. Building terrain-covering ant robots. Autonomous Robots, 16, (3), 313-332, 2004.
  2. ^ M. Batalin and G. Sukhatme. Efficient exploration without localization. Proceedings of the International Conference on Robotics and Automation, 2714-2719, 2003.
  3. ^ R. Russell. Heat trails as short-lived navigational markers for mobile robots. Proceedings of the International Conference on Robotics and Automation, 3534-3539, 1997.
  4. ^ a b R. Russell. Odour detection by mobile robots. World Scientific Publishing. 1999.
  5. ^ R. Sharpe and B. Webb. Simulated and situated models of chemical trail following in ants. Proceedings of the International Conference on Simulation of Adaptive Behavior, 195-204, 1998.
  6. ^ a b B. Ranjbar-Sahraei, S. Alers, K. Tuyls, G. Weiss. StiCo in Action. Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 1403-1404, 2013
  7. ^ . Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. LOST: Localization-space trails for robot teams. IEEE Transactions on Robotics and Automation, 18(5):796-812, 2002.
  8. ^
  9. ^ I. Wagner and A. Bruckstein, Special Issue on Ant Robotics, Annals of Mathematics and Artificial Intelligence, 31(1-4), 2001.
  10. ^ Shiloni, A., Agmon, N. and Kaminka, G. A. Of Robot Ants and Elephants. In Proceedings of the Eighth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-09), 2009.
  11. ^ Shiloni, A., Agmon, N. and Kaminka, G. A. Of Robot Ants and Elephants: A Computational Comparison. In Theoretical Computer Science, 412, 5771-5788, 2011.

External links

  • Ant robot by Sven Koenig
  • Ant algorithm by Israel Wagner

The text of this article was adopted from the Tutorial on Ant Robotics in compliance with their Creative Commons Attribution-Sharealike Unported License and the GNU Free Documentation License.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.