World Library  
Flag as Inappropriate
Email this Article

Ataxia

Article Id: WHEBN0000000969
Reproduction Date:

Title: Ataxia  
Author: World Heritage Encyclopedia
Language: English
Subject: Alcohol intoxication, Episodic ataxia, Familial hemiplegic migraine, Parkinsonian gait, Paralympic Games
Collection: Cerebral Palsy Types, Stroke, Symptoms and Signs: Nervous System
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Ataxia

Ataxia
Classification and external resources
Specialty Neurology
ICD-10 R27.0
DiseasesDB 15409
MeSH D001259

Ataxia (from Greek α- [a negative prefix] + -τάξις [order] = "lack of order") is a neurological sign consisting of lack of voluntary coordination of muscle movements that includes gait abnormality. Ataxia is a non-specific clinical manifestation implying dysfunction of the parts of the nervous system that coordinate movement, such as the cerebellum. Ataxia can be limited to one side of the body, which is referred to as hemiataxia. Several possible causes exist for these patterns of neurological dysfunction. Dystaxia is a mild degree of ataxia. Friedrich's ataxia has gait abnormality as the most common presenting symptom.[1]

Contents

  • Types 1
    • Cerebellar 1.1
    • Sensory 1.2
    • Vestibular 1.3
  • Causes 2
    • Focal lesions 2.1
    • Exogenous substances (metabolic ataxia) 2.2
    • Radiation poisoning 2.3
    • Vitamin B12 deficiency 2.4
    • Hypothyroidism 2.5
    • Causes of isolated sensory ataxia 2.6
    • Non-hereditary cerebellar degeneration 2.7
    • Hereditary ataxias 2.8
    • Arnold-Chiari malformation (congenital ataxia) 2.9
    • Wilson's disease 2.10
    • Gluten ataxia 2.11
    • Sodium-potassium pump 2.12
  • Treatment 3
  • Other uses 4
  • See also 5
  • References 6
  • Further reading 7
  • External links 8

Types

Cerebellar

The term cerebellar ataxia is used to indicate ataxia that is due to dysfunction of the cerebellum. The cerebellum is responsible for integrating a significant amount of neural information that is used to coordinate smoothly ongoing movements and to participate in motor planning. Although ataxia is not present with all cerebellar lesions, many conditions affecting the cerebellum do produce ataxia.[2] People with cerebellar ataxia may have trouble regulating the force, range, direction, velocity and rhythm of muscle contractions.[3] This results in a characteristic type of irregular, uncoordinated movement that can manifest itself in many possible ways, such as asthenia, asynergy, delayed reaction time, and dyschronometria. Individuals with cerebellar ataxia could also display instability of gait, difficulty with eye movements, dysarthria, dysphagia, hypotonia, dysmetria and dysdiadochokinesia.[2] These deficits can vary depending on which cerebellar structures have been damaged, and whether the lesion is bilateral or unilateral.

People with cerebellar ataxia may initially present with poor balance, which could be demonstrated as an inability to stand on one leg or perform tandem gait. As the condition progresses, walking is characterized by a widened base and high stepping, as well as staggering and lurching from side to side.[2] Turning is also problematic and could result in falls. As cerebellar ataxia becomes severe, great assistance and effort are needed to stand and walk.[2] Dysarthria, an impairment with articulation, may also be present and is characterized by "scanning" speech that consists of slower rate, irregular rhythm and variable volume.[2] There may also be slurring of speech, tremor of the voice and ataxic respiration. Cerebellar ataxia could result with incoordination of movement, particularly in the extremities. There is overshooting with finger to nose testing, and heel to shin testing; thus, dysmetria is evident.[2] Impairments with alternating movements (dysdiadochokinesia), as well as dysrhythmia, may also be displayed. There may also be tremor of the head and trunk (titubation) in individuals with cerebellar ataxia.[2]

It is thought that dysmetria is caused by a deficit in the control of interaction torques in multijoint motion.[4] Interaction torques are created at an associated joint when the primary joint is moved. For example, if a movement required reaching to touch a target in front of the body, flexion at the shoulder would create a torque at the elbow, while extension of the elbow would create a torque at the wrist. These torques increase as the speed of movement increases and must be compensated and adjusted for to create coordinated movement. This may, therefore, explain decreased coordination at higher movement velocities and accelerations.

  • Dysfunction of the vestibulocerebellum (flocculonodular lobe) impairs the balance and the control of eye movements. This presents itself with postural instability, in which the person tends to separate his/her feet upon standing, to gain a wider base and to avoid titubation (bodily oscillations tending to be forward-backward ones). The instability is therefore worsened when standing with the feet together, regardless of whether the eyes are open or closed. This is a negative Romberg's test, or more accurately, it denotes the individual's inability to carry out the test, because the individual feels unstable even with open eyes.
  • Dysfunction of the spinocerebellum (vermis and associated areas near the midline) presents itself with a wide-based "drunken sailor" gait (called truncal ataxia),[5] characterised by uncertain starts and stops, lateral deviations, and unequal steps. As a result of this gait impairment, falling is a concern in patients with ataxia. Studies examining falls in this population show that 74-93% of patients have fallen at least once in the past year and up to 60% admit to fear of falling.[6][7]
  • Dysfunction of the cerebrocerebellum (lateral hemispheres) presents as disturbances in carrying out voluntary, planned movements by the extremities (called appendicular ataxia).[5] These include:
    • intention tremor (coarse trembling, accentuated over the execution of voluntary movements, possibly involving the head and eyes as well as the limbs and torso);
    • peculiar writing abnormalities (large, unequal letters, irregular underlining);
    • a peculiar pattern of dysarthria (slurred speech, sometimes characterised by explosive variations in voice intensity despite a regular rhythm).
    • inability to perform rapidly alternating movements, known as dysdiadochokinesia. This could involve rapidly switching from pronation to supination of the forearm. Movements become more irregular with increases of speed.[8]
    • inability to judge distances or ranges of movement. This is known as dysmetria and is often seen as undershooting, hypometria, or overshooting, hypermetria, the required distance or range to reach a target. This is sometimes seen when a patient is asked to reach out and touch someone's finger or touch his or her own nose.[8]
    • the rebound phenomenon, also known as the loss of the check reflex is also sometimes seen in patients with cerebellar ataxia. For example, when a patient is flexing his or her elbow isometrically against a resistance. When the resistance is suddenly removed without warning, the patient's arm may swing up and even strike themselves. With an intact check reflex, the patient will check and activate the opposing triceps to slow and stop the movement.[8]

Sensory

The term sensory ataxia is employed to indicate ataxia due to loss of proprioception, the loss of sensitivity to the positions of joint and body parts. This is generally caused by dysfunction of the dorsal columns of the spinal cord, because they carry proprioceptive information up to the brain. In some cases, the cause of sensory ataxia may instead be dysfunction of the various parts of the brain which receive positional information, including the cerebellum, thalamus, and parietal lobes.

Sensory ataxia presents itself with an unsteady "stomping" gait with heavy heel strikes, as well as a postural instability that is usually worsened when the lack of proprioceptive input cannot be compensated for by visual input, such as in poorly lit environments.

Physicians can find evidence of sensory ataxia during physical examination by having the patient stand with his/her feet together and eyes shut. In affected patients, this will cause the instability to worsen markedly, producing wide oscillations and possibly a fall. This is called a positive Romberg's test. Worsening of the finger-pointing test with the eyes closed is another feature of sensory ataxia. Also, when the patient is standing with arms and hands extended toward the physician, if the eyes are closed, the patient's finger will tend to "fall down" and then be restored to the horizontal extended position by sudden muscular contractions (the "ataxic hand").

Vestibular

The term vestibular ataxia is employed to indicate ataxia due to dysfunction of the vestibular system, which in acute and unilateral cases is associated with prominent vertigo, nausea and vomiting. In slow-onset, chronic bilateral cases of vestibular dysfunction, these characteristic manifestations may be absent, and dysequilibrium may be the sole presentation.

Causes

The three types of ataxia have overlapping causes, and therefore can either coexist or occur in isolation.

Focal lesions

Any type of focal lesion of the central nervous system (such as stroke, brain tumour, multiple sclerosis) will cause the type of ataxia corresponding to the site of the lesion: cerebellar if in the cerebellum, sensory if in the dorsal spinal cord (and rarely in the thalamus or parietal lobe), vestibular if in the vestibular system (including the vestibular areas of the cerebral cortex).

Exogenous substances (metabolic ataxia)

Exogenous substances that cause ataxia mainly do so because they have a depressant effect on central nervous system function. The most common example is ethanol, which is capable of causing reversible cerebellar and vestibular ataxia. Other examples include various prescription drugs (e.g. most antiepileptic drugs have cerebellar ataxia as a possible adverse effect), Lithium level over 1.5mEq/L, synthetic cannabinoid HU-211 ingestion[9] and various other recreational drugs (e.g. ketamine, PCP or dextromethorphan, all of which are NMDA receptor antagonists that produce a dissociative state at high doses). A further class of pharmaceuticals which can cause short term ataxia, especially in high doses are the benzodiazepines.[10][11] Exposure to high levels of methylmercury, through consumption of fish with high mercury concentrations, is also a known cause of ataxia and other neurological disorders.[12]

Radiation poisoning

Ataxia can be induced as a result of severe acute radiation poisoning with an absorbed dose of more than 30 Grays.

Vitamin B12 deficiency

Vitamin B12 deficiency may cause, among several neurological abnormalities, overlapping cerebellar and sensory ataxia.

Hypothyroidism

Symptoms of neurological dysfunction may be the presenting feature in some patients with hypothyroidism. These include reversible cerebellar ataxia, dementia, peripheral neuropathy, psychosis and coma. Most of the neurological complications improve completely after thyroid hormone replacement therapy.[13][14]

Causes of isolated sensory ataxia

Peripheral neuropathies may cause generalised or localised sensory ataxia (e.g. a limb only) depending on the extent of the neuropathic involvement. Spinal disorders of various types may cause sensory ataxia from the lesioned level below, when they involve the dorsal columns[15][16][17]

Non-hereditary cerebellar degeneration

Non-hereditary causes of cerebellar degeneration include chronic ethanol abuse, head injury, paraneoplastic and non-paraneoplastic autoimmune ataxia,[18][19][20] high altitude cerebral oedema, coeliac disease, normal pressure hydrocephalus and infectious or post-infectious cerebellitis.

Hereditary ataxias

Ataxia may depend on hereditary disorders consisting of degeneration of the cerebellum and/or of the spine; most cases feature both to some extent, and therefore present with overlapping cerebellar and sensory ataxia, even though one is often more evident than the other. Hereditary disorders causing ataxia include autosomal dominant ones such as spinocerebellar ataxia, episodic ataxia, and dentatorubropallidoluysian atrophy, as well as autosomal recessive disorders such as Friedreich's ataxia (sensory and cerebellar, with the former predominating) and Niemann Pick disease, ataxia-telangiectasia (sensory and cerebellar, with the latter predominating), and abetalipoproteinaemia. An example of X-linked ataxic condition is the rare fragile X-associated tremor/ataxia syndrome.

Arnold-Chiari malformation (congenital ataxia)

Arnold-Chiari malformation is a malformation of the brain. It consists of a downward displacement of the cerebellar tonsils and the medulla through the foramen magnum, sometimes causing hydrocephalus as a result of obstruction of cerebrospinal fluid outflow.

Wilson's disease

  • Friedreich's Ataxia Research Alliance (FARA)
  • Ataxia Connect Social Network
  • Ataxia UK, including guidelines
  • Brasil, Rio Grande do Sul - Associação dos Amigos, Parentes e Portadores de Ataxias Dominantes
  • Canadian Association for Familial Ataxias - Claude St-Jean Foundation
  • International Ataxia Awareness Day
  • LivingWithAtaxia Forums & Community
  • Overview at National Institute of Neurological Disorders and Stroke (NINDS)
  • Rochester Ataxia Foundation, Rochester, NY
  • The latest news and research on Ataxia
  • US National Ataxia Foundation
  • University of Minnesota Ataxia Center
  • Video demonstration of ataxic gait
  • Gluten Ataxia
  • Range of Neurologic Disorders in Patients With Celiac Disease
  • The Cerebellum
  • Cerebellum and Ataxias

External links

Further reading

  1. ^ dystaxia. (n.d.). The American Heritage Stedman's Medical Dictionary. Retrieved 09 March 2014, from Dictionary.com website: http://dictionary.reference.com/browse/dystaxia
  2. ^ a b c d e f g
  3. ^
  4. ^
  5. ^ a b
  6. ^
  7. ^
  8. ^ a b c
  9. ^
  10. ^
  11. ^
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^
  23. ^
  24. ^
  25. ^
  26. ^
  27. ^
  28. ^
  29. ^
  30. ^
  31. ^
  32. ^ a b
  33. ^
  34. ^
  35. ^ a b
  36. ^
  37. ^
  38. ^ a b
  39. ^
  40. ^
  41. ^ a b
  42. ^
  43. ^

References

See also

The term "ataxia" is sometimes used in a broader sense to indicate lack of coordination in some physiological process. Examples include optic ataxia (lack of coordination between visual inputs and hand movements, resulting in inability to reach and grab objects) and ataxic respiration (lack of coordination in respiratory movements, usually due to dysfunction of the respiratory centres in the medulla oblongata). Optic ataxia may be caused by lesions to the posterior parietal cortex, which is responsible for combining and expressing positional information and relating it to movement. Outputs of the posterior parietal cortex include the spinal cord, brain stem motor pathways, pre-motor and pre-frontal cortex, basal ganglia and the cerebellum. Some neurons in the posterior parietal cortex are modulated by intention. Optic ataxia is usually part of Balint's syndrome, but can be seen in isolation with injuries to the superior parietal lobule, as it represents a disconnection between visual-association cortex and the frontal premotor and motor cortex.[43]

Other uses

  • The Berg Balance Scale
  • Tandem Walking (to test for Tandem gaitability)
  • Scale for the Assessment and Rating of Ataxia[40]
  • tapping tests – The person must quickly and repeatedly tap their arm or leg while the therapist monitors the amount of dysdiadochokinesia.[41]
  • finger-nose testing[41] – This test has several variations including finger-to-therapist's finger, finger-to-finger, and alternate nose-to-finger.[42]

There are several assessment tools available to therapists and health care professionals working with patients with ataxia. The International Cooperative Ataxia Rating Scale (ICARS) is one of the most widely used and has been proven to have very high reliability and validity.[39] Other tools that assess motor function, balance and coordination are also highly valuable to help the therapist track the progress of their patient, as well as to quantify the patient's functionality. These tests include, but are not limited to:

Decomposition, simplification, or slowing of multijoint movement may also be an effective strategy that therapists may use to improve function in patients with ataxia.[37] Training likely needs to be intense and focused—as indicated by one study performed with stroke patients experiencing limb ataxia who underwent intensive upper limb retraining.[38] Their therapy consisted of constraint-induced movement therapy which resulted in improvements of their arm function.[38] Treatment should likely include strategies to manage difficulties with everyday activities such as walking. Gait aids (such as a cane or walker) can be provided to decrease the risk of falls associated with impairment of balance or poor coordination. Severe ataxia may eventually lead to the need for a wheelchair. To obtain better results, possible coexisting motor deficits need to be addressed in addition to those induced by ataxia. For example, muscle weakness and decreased endurance could lead to increasing fatigue and poorer movement patterns.

Current research suggests that, if a person is able to walk with or without a mobility aid, physical therapy should include an exercise program addressing five components: static balance, dynamic balance, trunk-limb coordination, stairs, and contracture prevention. Once the physical therapist determines that the individual is able to safely perform parts of the program independently, it is important that the individual be prescribed and regularly engage in a supplementary home exercise program that incorporates these components to further improve long term outcomes. These outcomes include balance tasks, gait, and individual activities of daily living. While the improvements are attributed primarily to changes in the brain and not just the hip and/or ankle joints, it is still unknown whether the improvements are due to adaptations in the cerebellum or compensation by other areas of the brain.[35]

Physical therapy requires a focus on adapting activity and facilitating motor learning for retraining specific functional motor patterns.[35] A recent systematic review suggested that physical therapy is effective, but there is only moderate evidence to support this conclusion.[36] The most commonly used physical therapy interventions for cerebellar ataxia are vestibular habituation, Frenkel Exercises, proprioceptive neuromuscular facilitation (PNF), and balance training; however, therapy is often highly individualized and gait and coordination training are large components of therapy.

The movement disorders associated with ataxia can be managed by pharmacological treatments and through physical therapy and occupational therapy to reduce disability.[34] Some drug treatments that have been used to control ataxia include: 5-hydroxytryptophan (5-HTP), idebenone, amantadine, physostigmine, L-carnitine or derivatives, trimethoprim–sulfamethoxazole, vigabatrin, phosphatidylcholine, acetazolamide, 4-aminopyridine, buspirone, and a combination of coenzyme Q10 and vitamin E.[32]

The treatment of ataxia and its effectiveness depend on the underlying cause. Treatment may limit or reduce the effects of ataxia, but it is unlikely to eliminate them entirely. Recovery tends to be better in individuals with a single focal injury (such as stroke or a benign tumour), compared to those who have a neurological degenerative condition.[31] A review of the management of degenerative ataxia was published in 2009.[32] A small number of rare conditions presenting with prominent cerebellar ataxia are amenable to specific treatment and recognition of these disorders is critical. Diseases include Vitamin E deficiency, Abetalipoproteinemia, Cerebrotendinous Xanthomatosis,Niemann–Pick Type C Disease,Refsum’s Disease,Glucose Transporter Type 1 Deficiency,Episodic Ataxia Type 2,Gluten Ataxia,Glutamic Acid Decarboxylase Ataxia.[33]

Treatment

Malfunction of the sodium-potassium pump may be a factor in some ataxias. The Na+
-K+
pump has been shown to control and set the intrinsic activity mode of cerebellar Purkinje neurons.[28] This suggests that the pump might not simply be a homeostatic, "housekeeping" molecule for ionic gradients; but could be a computational element in the cerebellum and the brain.[29] Indeed, an ouabain block of Na+
-K+
pumps in the cerebellum of a live mouse results in it displaying ataxia and dystonia.[30] Ataxia is observed for lower ouabain concentrations, dystonia is observed at higher ouabain concentrations.

Sodium-potassium pump

Gluten ataxia is defined as sporadic cerebellar ataxia associated with the presence circulating antigliadin antibodies and in the absence of an alternative etiology for ataxia.[27]

Gluten ataxia is an immune-mediated disease triggered by the ingestion of gluten in genetically susceptible individuals. It should be considered in the differential diagnosis of all patients with idiopathic sporadic ataxia. Early diagnosis and treatment with a gluten free diet can improve ataxia and prevent its progression. Readily available and sensitive markers of gluten ataxia include anti-gliadin antibodies. Immunoglobulin A (IgA) deposits against transglutaminase 2 (TG2) in the small bowel and at extraintestinal sites are proving to be additionally reliable and perhaps more specific markers of the whole spectrum of gluten sensitivity. They may also hold the key to its pathogenesis.[26]

Gluten ataxia is a gluten-related disorder, a wide spectrum of disorders marked by an abnormal immunological response to gluten. Like celiac disease, it is an autoimmune disease.[23] With gluten ataxia, damage takes place in the cerebellum, the balance center of the brain that controls coordination and complex movements like walking, speaking and swallowing.[24] Gluten ataxia is the single most common cause of sporadic idiopathic ataxia.[25]

Gluten ataxia

[22]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.