World Library  
Flag as Inappropriate
Email this Article

Axiom of countable choice

Article Id: WHEBN0000421086
Reproduction Date:

Title: Axiom of countable choice  
Author: World Heritage Encyclopedia
Language: English
Subject: Axiom of choice, Countable set, Finite set, List of set theory topics, Set theory
Collection: Axiom of Choice
Publisher: World Heritage Encyclopedia

Axiom of countable choice

Each set in the countable sequence of sets (Si) = S1, S2, S3, ... contains a nonzero, and possibly infinite (or even uncountably infinite), number of elements. The axiom of countable choice allows us to arbitrarily select a single element from each set, forming a corresponding sequence of elements (xi) = x1, x2, x3, ...

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that any countable collection of non-empty sets must have a choice function. I.e., given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, then there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.

The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), (Jech 1973) which in turn is weaker than the axiom of choice (AC). Paul Cohen showed that ACω, is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice(Potter 2004). ACω holds in the Solovay model.

ZF + ACω suffices to prove that the union of countably many countable sets is countable. It also suffices to prove that every infinite set is Dedekind-infinite (equivalently: has a countably infinite subset).

ACω is particularly useful for the development of analysis, where many results depend on having a choice function for a countable collection of sets of real numbers. For instance, in order to prove that every accumulation point x of a set SR is the limit of some sequence of elements of S\{x}, one needs (a weak form of) the axiom of countable choice. When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω. For other statements equivalent to ACω, see Herrlich (1997) and Howard & Rubin (1998).

A common misconception is that countable choice has an inductive nature and is therefore provable as a theorem (in ZF, or similar, or even weaker systems) by induction. However, this is not the case; this misconception is the result of confusing countable choice with finite choice for a finite set of size n (for arbitrary n), and it is this latter result (which is an elementary theorem in combinatorics) that is provable by induction. However, some countably infinite sets of nonempty sets can be proven to have a choice function in ZF without any form of the axiom of choice. These include Vω− {Ø} and the set of proper and bounded open intervals of real numbers with rational endpoints.


As an example of an application of ACω, here is a proof (from ZF+ACω) that every infinite set is Dedekind-infinite:

Let X be infinite. For each natural number n, let An be the set of all 2n-element subsets of X. Since X is infinite, each An is nonempty. A first application of ACω yields a sequence (Bn : n=0,1,2,3,...) where each Bn is a subset of X with 2n elements.
The sets Bn are not necessarily disjoint, but we can define
C0 = B0
Cn= the difference of Bn and the union of all Cj, j<n.
Clearly each set Cn has at least 1 and at most 2n elements, and the sets Cn are pairwise disjoint. A second application of ACω yields a sequence (cn: n=0,1,2,...) with cnCn.
So all the cn are distinct, and X contains a countable set. The function that maps each cn to cn+1 (and leaves all other elements of X fixed) is a 1-1 map from X into X which is not onto, proving that X is Dedekind-infinite.


This article incorporates material from axiom of countable choice on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.