World Library  
Flag as Inappropriate
Email this Article

Chloroplast membrane

Article Id: WHEBN0000375618
Reproduction Date:

Title: Chloroplast membrane  
Author: World Heritage Encyclopedia
Language: English
Subject: Thylakoid, Galactolipid, Inner membrane, Eyespot apparatus, Membrane biology
Collection: Membrane Biology
Publisher: World Heritage Encyclopedia

Chloroplast membrane

Cell biology
The chloroplast
Components of a typical chloroplast

1 Granum
2 Chloroplast envelope   ◄ You are here

2.1 Outer membrane
2.2 Intermembrane space
2.3 Inner membrane

3 Thylakoid

3.1 Thylakoid space (lumen)
3.2 Thylakoid membrane

4 Stromal thylakoid
5 Stroma
6 Nucleoid (DNA ring)
7 Ribosome
8 Plastoglobulus
9 Starch granule

secondary endosymbiosis, such as the euglenids and chlorarachniophytes.[1]

The origin of chloroplasts is now largely accepted by the botany community as occurring via endosymbiosis on an ancestral basis with the engulfment of photosynthetic bacterium within the eukaryotic cell. Over millions of years the endosymbiotic cyanobacterium evolved structurally and functionally, retaining its own DNA and the ability to divide by binary fission (not mitotically) but giving up its autonomy by the transfer of some of its genes to the nuclear genome.

Envelope membranes

Each of the envelope membranes is a lipid bilayer that is between 6 and 8 nm thick. The lipid composition of the outer membrane has been found to be 48% phospholipids, 46% galactolipids and 6% sulfolipids, while the inner membrane has been found to contain 16% phospholipids, 79% galactolipids and 5% sulfolipids in spinach chloroplasts.[2]

The outer membrane is permeable to most ions and metabolites, but the inner membrane is highly specialised with transport proteins.[3][4] For example, carbohydrates are transported across the inner envelope membrane by a triose phosphate translocator.[5] The two envelope membranes are separated by a gap of 10–20 nm, called the intermembrane space.

Thylakoid membrane

Within the envelope membranes, in the region called the stroma, there is a system of interconnecting flattened membrane compartments, called the thylakoids. The thylakoid membrane is quite similar in lipid composition to the inner envelope membrane, containing 78% galactolipids, 15.5% phospholipids and 6.5% sulfolipids in spinach chloroplasts.[2] The thylakoid membrane encloses a single, continuous aqueous compartment called the thylakoid lumen.[6]

These are the sites of light absorption and ATP synthesis, and contain many proteins, including those involved in the electron transport chain. Photosynthetic pigments such as chlorophylls a,b and c some others, e.g., xanthophylls, carotenoids, phycobilins are also embedded within the granum membrane. With exception of chlorophyll a, all the other associated pigments are "accessory" and transfer energy to the reaction centers, Photosytems I and II.

The membranes of the thylakoid contain photosystems I and II which harvest solar energy to excite electrons which travel down the electron transport chain. This exergonic fall in potential energy along the way is used to draw (not pump!) H+ ions from the lumen of the thylakoid into the cytosol of a cyanobacterium or the stroma of a chloroplast. A steep H+ gradient is formed, which allows chemiosmosis to occur, where the thylakoid, transmenbrane ATP-synthase serves a dual function as a "gate" or channel for H+ ions and a catalytic site for the formation of ATP from ADP + a PO43− ion.

Experiments have shown that the pH within the stroma is about 7.8, while that of the lumen of the thylakoid is 5. This corresponds to a six-hundredfold difference in concentration of H+ ions. The H+ ions pass down through the ATP-synthase catalytic gate. This chemiosmotic phenomenon occurs in mitochondria.


  1. ^ Kim, E., and Archibald, J. M. (2009) “Diversity and Evolution of Plastids and Their Genomes.” In The Chloroplast, Anna Stina Sandelius and Henrik Aronsson (eds.), 1–39. Plant Cell Monographs 13. Springer Berlin Heidelberg. doi:10.1007/978-3-540-68696-5_1 ISBN 978-3-540-68696-5
  2. ^ a b Block, MA; Dorne, AJ; Joyard, J; Douce, R (Nov 10, 1983). "Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization". The Journal of Biological Chemistry 258 (21): 13281–6.  
  3. ^ Heldt, HW; Sauer, F (Apr 6, 1971). "The inner membrane of the chloroplast envelope as the site of specific metabolite transport.". Biochimica et Biophysica Acta 234 (1): 83–91.  
  4. ^ Inoue, Kentaro (1 August 2007). "The Chloroplast Outer Envelope Membrane: The Edge of Light and Excitement". Journal of Integrative Plant Biology 49 (8): 1100–1111.  
  5. ^ Walters, R. G.; Ibrahim, DG; Horton, P; Kruger, NJ (2004). "A Mutant of Arabidopsis Lacking the Triose-Phosphate/Phosphate Translocator Reveals Metabolic Regulation of Starch Breakdown in the Light". Plant Physiology 135 (2): 891–906.  
  6. ^ Mustárdy, L; Garab, G (March 2003). "Granum revisited. A three-dimensional model—where things fall into place". Trends in Plant Science 8 (3): 117–22.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.