World Library  
Flag as Inappropriate
Email this Article

Continuous spectrum

Article Id: WHEBN0006472479
Reproduction Date:

Title: Continuous spectrum  
Author: World Heritage Encyclopedia
Language: English
Subject: Scattering theory, Bremsstrahlung radiation, Variational method (quantum mechanics), Expectation value (quantum mechanics), Barry Simon
Collection: Scattering Theory
Publisher: World Heritage Encyclopedia

Continuous spectrum

Spectrum of light emitted by a deuterium lamp, showing a discrete part (tall sharp peaks) and a continuous part (smoothly varying between the peaks). The smaller peaks and valleys may be due to measurement errors rather than discrete spectral lines.

In physics, a continuous spectrum usually means a set of attainable values for some physical quantity (such as energy or wavelength) that is best described as an interval of real numbers. It is opposed to discrete spectrum, a set of attainable values that is discrete in the mathematical sense, where there is a positive gap between each value and the next one.

The classical example of a continuous spectrum, from which the name is derived, is the part of the spectrum of the light emitted by excited atoms of hydrogen that is due to free electrons becoming bound to a hydrogen ion and emitting photons, which are smoothly spread over a wide range of wavelengths; in contrast to the discrete lines due to electrons falling from some bound quantum state to a state of lower energy.

As in that classical example, the term is most often used when the range of values of a physical quantity may have both a continuous and a discrete part, whether at the same time or in different situations. In quantum systems, continuous spectra (as in bremsstrahlung and thermal radiation) are usually associated with free particles, such as atoms in a gas, electrons in an electron beam, or conduction band electrons in a metal. In particular, the position and momentum of a free particle have a continuous spectrum, but when the particle is confined to a limited space its spectrum becomes discrete.

Often a continuous spectrum may be just a convenient model for a discrete spectrum whose values are too close to be distinguished, as in the phonons in a crystal.

The continuous and discrete spectra of physical systems can be modeled in functional analysis as different parts in the decomposition of the spectrum of a linear operator acting on a function space, such as the Hamiltonian operator.

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.