#jsDisabledContent { display:none; } My Account |  Register |  Help

# Dedekind eta function

Article Id: WHEBN0000447020
Reproduction Date:

 Title: Dedekind eta function Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Dedekind eta function

Dedekind η-function in the upper half-plane

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive.

## Contents

• Definition 1
• Combinatoric identities 2
• Special values 3
• Eta quotients 4
• References 6
• Further reading 7

## Definition

For any such complex number τ, let q = exp(2πiτ), and define the eta function by,

\eta(\tau) = e^{\frac{\pi \rm{i} \tau}{12}} \prod_{n=1}^{\infty} (1-q^{n}) .

The notation q \equiv e^{2\pi \rm{i} \tau}\, is now standard in number theory, though many older books use q for the nome e^{\pi \rm{i} \tau}\,. Its 24th power gives,

\Delta=(2\pi)^{12}\eta^{24}(\tau)

where Δ is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice.

The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it.

Modulus of Euler phi on the unit disc, colored so that black=0, red=4
The real part of the modular discriminant as a function of q.

The eta function satisfies the functional equations[1]

\eta(\tau+1) =e^{\frac{\pi {\rm{i}}}{12}}\eta(\tau),\,
\eta(-\tfrac{1}{\tau}) = \sqrt{-{\rm{i}}\tau} \eta(\tau).\,

More generally, suppose abcd are integers with ad − bc = 1, so that

\tau\mapsto\frac{a\tau+b}{c\tau+d}

is a transformation belonging to the modular group. We may assume that either c > 0, or c = 0 and d = 1. Then

\eta \left( \frac{a\tau+b}{c\tau+d} \right) = \epsilon (a,b,c,d) (c\tau+d)^{\frac{1}{2}} \eta(\tau),

where

\epsilon (a,b,c,d)=e^\pi [\frac{a+d}{12c} - s(d,c) -\frac{1}{4}]}\quad(c>0).

Here s(h,k)\, is the Dedekind sum

s(h,k)=\sum_{n=1}^{k-1} \frac{n}{k} \left( \frac{hn}{k} - \left\lfloor \frac{hn}{k} \right\rfloor -\frac{1}{2} \right).

Because of these functional equations the eta function is a modular form of weight 1/2 and level 1 for a certain character of order 24 of the metaplectic double cover of the modular group, and can be used to define other modular forms. In particular the modular discriminant of Weierstrass can be defined as

\Delta(\tau) = (2 \pi)^{12} \eta(\tau)^{24}\,

and is a modular form of weight 12. (Some authors omit the factor of (2π)12, so that the series expansion has integral coefficients).

The Jacobi triple product implies that the eta is (up to a factor) a Jacobi theta function for special values of the arguments:

\eta(\tau) = \sum_{n=1}^\infty \chi(n) \exp(\tfrac{1}{12} \pi i n^2 \tau),

where \chi(n) is the Dirichlet character modulo 12 with \chi(\pm1) = 1, \chi(\pm 5)=-1. Explicitly,

\eta(\tau) = e^{\tfrac{\pi i \tau}{12}}\vartheta_3(\tfrac{\pi(\tau+1)}{2}, e^{3\pi i \tau}).
\phi(q) = \prod_{n=1}^{\infty} \left(1-q^n\right),

related to \eta \, by \phi(q)= q^{-1/24} \eta(\tau)\,, has a power series by the Euler identity:

\phi(q)=\sum_{n=-\infty}^\infty (-1)^n q^{(3n^2-n)/2}.

Because the eta function is easy to compute numerically from either power series, it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms.

The picture on this page shows the modulus of the Euler function: the additional factor of q^{1/24} between this and eta makes almost no visual difference whatsoever (it only introduces a tiny pinprick at the origin). Thus, this picture can be taken as a picture of eta as a function of q.

## Combinatoric identities

The theory of the algebraic characters of the affine Lie algebras gives rise to a large class of previously unknown identities for the eta function. These identities follow from the Weyl-Kac character formula, and more specifically from the so-called "denominator identities". The characters themselves allow the construction of generalizations of the Jacobi theta function which transform under the modular group; this is what leads to the identites. An example of one such new identity[2] is

\eta(8\tau)\eta(16\tau) = \sum_{m,n\in \mathbb{Z} \atop m \le |3n|} (-1)^m q^{(2m+1)^2 - 32n^2}

where q=\exp 2\pi i \tau is the q-analog or "deformation" of the highest weight of a module.

## Special values

The above connection with the Euler function together with the special values of the latter, it can be easily deduced that

\eta(i)=\frac{\Gamma \left(\frac{1}{4}\right)}{2 \pi ^{3/4}},
\eta\left(\tfrac{1}{2}i\right)=\frac{\Gamma \left(\frac{1}{4}\right)}{2^{7/8} \pi ^{3/4}},
\eta(2i)=\frac{\Gamma \left(\frac{1}{4}\right)}{2^,
\eta(4i)=\frac{\sqrt[4]{-1+\sqrt{2}}\; \Gamma \left(\frac{1}{4}\right)}{2^.

## Eta quotients

Quotients of the Dedekind eta function at imaginary quadratic arguments may be algebraic, while combinations of eta quotients may even be integral. For example, define,

j(\tau)=\Big(\big(\tfrac{\eta(\tau)}{\eta(2\tau)}\big)^{8}+2^8 \big(\tfrac{\eta(2\tau)}{\eta(\tau)}\big)^{16}\Big)^3
j_{2A}(\tau)=\Big(\big(\tfrac{\eta(\tau)}{\eta(2\tau)}\big)^{12}+2^6 \big(\tfrac{\eta(2\tau)}{\eta(\tau)}\big)^{12}\Big)^2
j_{3A}(\tau) =\Big(\big(\tfrac{\eta(\tau)}{\eta(3\tau)}\big)^{6}+3^3 \big(\tfrac{\eta(3\tau)}{\eta(\tau)}\big)^{6}\Big)^2

then,

j\Big(\tfrac{1+\sqrt{-163}}{2}\Big) = -640320^3,\quad e^{\pi\sqrt{163}} \approx 640320^3+743.99999999999925\dots
j_{3A}\Big(\tfrac{1+\sqrt{-89/3}}{2}\Big) = -300^3,\quad e^{\pi\sqrt{89/3}}\approx 300^3+41.999971\dots

and so on, values which appear in Ramanujan–Sato series.

## References

1. ^ Siegel, C.L. (1954). "A Simple Proof of \eta(-1/\tau) = \eta(\tau)\sqrt{\tau/{\rm{i}}}\,". Mathematika 1: 4.
2. ^ Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press,

• Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (2 ed), Graduate Texts in Mathematics 41 (1990), Springer-Verlag, ISBN 3-540-97127-0 See chapter 3.
• Neal Koblitz, Introduction to Elliptic Curves and Modular Forms (2 ed), Graduate Texts in Mathematics 97 (1993), Springer-Verlag, ISBN 3-540-97966-2
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.