World Library  
Flag as Inappropriate
Email this Article

Deoxyribose

Article Id: WHEBN0000061388
Reproduction Date:

Title: Deoxyribose  
Author: World Heritage Encyclopedia
Language: English
Subject: Nucleotide, Carbohydrate, Ribose, Nucleic acid, Gene
Collection: Aldopentoses, Deoxy Sugars
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Deoxyribose

D-Deoxyribose
Identifiers
CAS number  YesY
PubChem
ChemSpider  YesY
EC-number
ChEBI  YesY
Jmol-3D images Image 1
Properties[1]
Molecular formula C5H10O4
Molar mass 134.13 g mol−1
Appearance White solid
Melting point 91 °C (196 °F; 364 K)
Solubility in water Very soluble
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H-(C=O)-(CH2)-(CHOH)3-H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of an oxygen atom. Since the pentose sugars arabinose and ribose only differ by the stereochemistry at C2', 2-deoxyribose and 2-deoxyarabinose are equivalent, although the latter term is rarely used because ribose, not arabinose, is the precursor to deoxyribose.

Contents

  • Structure 1
  • Biological importance 2
    • Biosynthesis 2.1
  • History 3
  • References 4

Structure

Several isomers exist with the formula H-(C=O)-(CH2)-(CHOH)3-H, but in deoxyribose all the hydroxyl groups are on the same side in the Fischer projection. The term "2-deoxyribose" may refer to either of two enantiomers: the biologically important D-2-deoxyribose and to the rarely encountered mirror image L-2-deoxyribose.[2] D-2-Deoxyribose is a precursor to the nucleic acid DNA. 2-Deoxyribose is an aldopentose, that is, a monosaccharide with five carbon atoms and having an aldehyde functional group.

In aqueous solution, deoxyribose primarily exists as a mixture of three structures: the linear form H-(C=O)-(CH2)-(CHOH)3-H and two ring forms, deoxyribofuranose ("C3'-endo"), with a five-membered ring, and deoxyribopyranose ("C2'-endo"), with a six-membered ring. The latter form is predominant (whereas the C3'-endo form is favored for ribose).

Chemical equilibrium of deoxyribose in solution.

Biological importance

As a component of DNA, 2-deoxyribose derivatives have an important role in biology.[3] The base (usually adenine, thymine, guanine or cytosine) attached to the 1' ribose carbon. The 5' hydroxyl of each deoxyribose unit is replaced by a phosphate (forming a nucleotide) that is attached to the 3' carbon of the deoxyribose in the preceding unit.

The absence of the 2' hydroxyl group in deoxyribose is apparently responsible for the increased mechanical flexibility of DNA compared to RNA, which allows it to assume the double-helix conformation, and also (in the eukaryotes) to be compactly coiled within the small cell nucleus. The double-stranded DNA molecules are also typically much longer than RNA molecules. The backbone of RNA and DNA are structurally similar, but RNA is single stranded, and made from ribose as opposed to deoxyribose.

Other biologically important derivatives of deoxyribose include mono-, di-, and triphosphates, as well as 3'-5' cyclic monophosphates.

Biosynthesis

Deoxyribose is generated from ribose 5-phosphate by enzymes called ribonucleotide reductases. These enzymes catalyse the deoxygenation process.

History

It was discovered in 1929 by Phoebus Levene.

References

  1. ^  , 2890
  2. ^ C Bernelot-Moens and B Demple (1989), Multiple DNA repair activities for 3'-deoxyribose fragments in Escherichia coli.. Nucleic Acids Research, Volume 17, issue 2, pp. 587–600.
  3. ^ C.Michael Hogan. 2010. . Encyclopedia of Earth. National Council for Science and the Environment.Deoxyribonucleic acid eds. S.Draggan and C.Cleveland. Washington DC
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.