World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000222685
Reproduction Date:

Title: Dilithium  
Author: World Heritage Encyclopedia
Language: English
Subject: Morse/Long-range potential, Lithium, Lithium compounds, Dilithium (Star Trek), Prime Directive (Star Trek novel)
Collection: Homonuclear Diatomic Molecules, Lithium Compounds
Publisher: World Heritage Encyclopedia


Wireframe model of dilithium
Spacefill model of dilithium
IUPAC name
ChemSpider  Y
Jmol-3D images Image
Molar mass 13.88 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 101 kJ mol−1.[1] The electron configuration of Li2 may be written as σ2.

It has been observed that 1% (by mass) of lithium in the vapor phase is in the form of dilithium. Molecules containing more than two lithium atoms covalently bonded together do exist, albeit in smaller quantities than dilithium. Clusters of lithium atoms also exist; the most common arrangement is Li6.

Being the lightest stable neutral homonuclear diatomic molecule after H2, dilithium is an extremely important model system for studying fundamentals of physics, chemistry, and electronic structure theory. It is the most thoroughly characterized compound in terms of the accuracy and completeness of the empirical potential energy curves of its electronic states. Analytic empirical potential energy curves have been constructed for the X-state,[2] a-state,[3] A-state,[4] c-state,[5] B-state,[6] 2d-state,[7] and l-state,[7] E-state,[8] and the F-state[9] mainly by professors Robert J. Le Roy[2][3][6] of University of Waterloo and Nikesh S. Dattani[2][3][4][5] of University of Oxford. The most reliable of these potential energy curves are of the Morse/Long-range variety.

Li2 potentials are often used to extract atomic properties. For example, the C3 value for atomic lithium extracted from the A-state potential of Li2 by Le Roy et al. in [2] is more precise than any previously measured atomic oscillator strength.[10] This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.

Electronic State Spectroscopic Symbol Molecular term symbol Bond length in pm Dissociation energy in cm−1 # of bound vibrational levels Scattering length in Angstroms References
Ground X 11Σg+ 267.298 74(19)[2] 8 516.780 0(23)[2] 39[2] [2]
2 a 13Σu+ 417.000 6(32)[3] 333.779 5(62)[3] 11[3] [3]
3 b 13Πu [7]
4 A 11Σg+ 310.792 88(36)[2] 9 353.179 5 (28)[2] 118[2] [2]
5 c 13Σg+ 306.543 6(16)[3] 7093.4926(86)[3] 104[3]
6 B 11Πu 293.617 142(310)[6] 298 4.444[6] 118[6]
7 E 3(?)1Σg+ [8]

See also


  1. ^ Chemical Bonding, Mark J. Winter, Oxford University Press, 1994, ISBN 0-19-855694-2
  2. ^ a b c d e f g h i j k l Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics 131 (20): 204309.  
  3. ^ a b c d e f g h i j Dattani, N. S.; R. J. Le Roy (8 May 2013). (c) that incorporate 3-state mixing near the c-state asymptote"2(a) and Li2"A DPF data analysis yields accurate analytic potentials for Li. Journal of Molecular Spectroscopy (Special Issue) 268: 199–210.  
  4. ^ a b W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state,
  5. ^ a b Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). c-state"2Li6"High-resolution photoassociation spectroscopy of the . Phys. Rev. A 87 (5): 052505.  
  6. ^ a b c d e Huang, Yiye; R. J. Le Roy (8 October 2003). "Potential energy Lambda double and Born-Oppenheimer breakdown functions for the B1Piu "barrier" state of Li2". Journal of Chemical Physics 119 (14): 7398–7416.  
  7. ^ a b c Li, Dan; F. Xie; L. Li; A. Lazoudis; A. M. Lyyra (29 September 2007). Li data"7Li6, and 2Li7, 2Li6"New observation of the, 13Δg, and 23Πg states and molecular constants with all . Journal of Molecular Spectroscopy 246 (2): 180–186.  
  8. ^ a b Jastrzebski, W; A. Pashov; P. Kowalczyk (22 June 2001). "The E-state of lithium dimer revised". Journal of Chemical Physics 114 (24): 10725–10727.  
  9. ^ Pashov, A; W. Jastzebski; P. Kowalczyk (22 October 2000). "The Li2 F "shelf" state: Accurate potential energy curve based on the inverted perturbation approach". Journal of Chemical Physics 113 (16): 6624–6628.  
  10. ^ Tang, Li-Yan; Z-C. Yan, T-Y Shi, J. Mitroy (30 November 2011). "Third-order perturbation theory for van der Waals interaction coefficients". Physical Review A 84 (5): 052502.  

Further reading

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.