### Direction cosines

In analytic geometry, the **direction cosines** (or **directional cosines**) of a vector are the cosines of the angles between the vector and the three coordinate axes. Or equivalently it is the component contributions of the basis to the unit vector.

## Three dimensional Cartesian coordinates

If **v** is a Euclidean vector in three dimensional Euclidean space, ℝ^{3},

- $\{\backslash mathbf\; v\}=\; v\_\backslash text\{x\}\; \backslash mathbf\{e\}\_\backslash text\{x\}\; +\; v\_\backslash text\{y\}\; \backslash mathbf\{e\}\_\backslash text\{y\}\; +\; v\_\backslash text\{z\}\; \backslash mathbf\{e\}\_\backslash text\{z\}$

where **e**_{x}, **e**_{y}, **e**_{z} are the standard basis in Cartesian notation, then the direction cosines are

- $\backslash begin\{align\}$

\alpha & = \cos a = \frac{\sqrt{v_\text{x}^2 + v_\text{y}^2 + v_\text{z}^2}} ,\\ \beta & = \cos b = \frac{\sqrt{v_\text{x}^2 + v_\text{y}^2 + v_\text{z}^2}} ,\\ \gamma &= \cos c = \frac{\sqrt{v_\text{x}^2 + v_\text{y}^2 + v_\text{z}^2}}. \end{align}

It follows that by squaring each equation and adding the results:

- $\backslash cos\; ^2\; a\; +\; \backslash cos\; ^2\; b\; +\; \backslash cos\; ^2\; c\; =\; 1\backslash ,.$

Here, *α*, *β* and *γ* are the direction cosines and the Cartesian coordinates of the unit vector **v**/|**v**|, and *a*, *b* and *c* are the direction angles of the vector **v**.

The direction angles *a*, *b* and *c* are acute or obtuse angles, i.e., 0 ≤ *a* ≤ π, 0 ≤ *b* ≤ *π* and 0 ≤ *c* ≤ *π* and they denote the angles formed between **v** and the unit basis vectors, **e**_{x}, **e**_{y} and **e**_{z}.

## General meaning

More generally, **direction cosine** refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis.

## See also

## References

- MathWorld.

This geometry-related article is a stub. You can help World Heritage Encyclopedia by expanding it. |