World Library  
Flag as Inappropriate
Email this Article

Einstein's unsuccessful investigations

Article Id: WHEBN0032123511
Reproduction Date:

Title: Einstein's unsuccessful investigations  
Author: World Heritage Encyclopedia
Language: English
Subject: Einstein family, The World as I See It (book), Einstein Prize (APS), Index of physics articles (E), Annus Mirabilis papers
Publisher: World Heritage Encyclopedia

Einstein's unsuccessful investigations

Einstein's unsuccessful investigations are in addition to his life's work. Einstein conducted other investigations that were unsuccessful and abandoned. These pertain to force, superconductivity, gravitational waves, and other research.

Special relativity

In the special relativity paper, in 1905, Einstein noted that, given a specific definition of the word "force" (a definition which he later agreed was not advantageous), and if we choose to maintain (by convention) the equation mass x acceleration = force, then one arrives at \scriptstyle m/(1 - v^2/c^2) as the expression for the transverse mass of a fast moving particle. This differs from the accepted expression today, because, as noted in the footnotes to Einstein's paper added in the 1913 reprint, "it is more to the point to define force in such a way that the laws of energy and momentum assume the simplest form", as was done, for example, by Max Planck in 1906, who gave the now familiar expression \scriptstyle m/\sqrt{1 - v^2/c^2} for the transverse mass.

As Miller points out, this is equivalent to the transverse mass predictions of both Einstein and Lorentz. Einstein had commented already in the 1905 paper that "With a different definition of force and acceleration, we should naturally obtain other expressions for the masses. This shows that in comparing different theories... we must proceed very cautiously."[1]


Einstein published (in 1922) a qualitative theory of superconductivity based on the vague idea of electrons shared in orbits. This paper predated modern quantum mechanics, and today is regarded as being incorrect. The current theory of low temperature superconductivity was only worked out in 1957, thirty years after the establishing of modern quantum mechanics. However, even today, superconductivity is not well understood, and alternative theories continue to be put forward, especially to account for high-temperature superconductors.

Gravitational waves

After introducing the concept of gravitational waves in 1917, Einstein subsequently entertained doubts about whether they could be physically realized. In 1937 he published a paper saying that the focusing properties of geodesics in general relativity would lead to an instability which causes plane gravitational waves to collapse in on themselves. While this is true to a certain extent in some limits, because gravitational instabilities can lead to a concentration of energy density into black holes, for plane waves of the type Einstein and Rosen considered in their paper, the instabilities are under control. Einstein retracted this position a short time later.

Black holes

Einstein denied several times that black holes could form. In 1939 he published a paper that argues that a star collapsing would spin faster and faster, spinning at the speed of light with infinite energy well before the point where it is about to collapse into a black hole. This paper received no citations, and the conclusions are well understood to be wrong. Einstein's argument itself is inconclusive, since he only shows that stable spinning objects have to spin faster and faster to stay stable before the point where they collapse. But it is well understood today (and was understood well by some even then) that collapse cannot happen through stationary states the way Einstein imagined. Nevertheless, the extent to which the models of black holes in classical general relativity correspond to physical reality remains unclear, and in particular the implications of the central singularity implicit in these models are still not understood. Efforts to conclusively prove the existence of event horizons have still not been successful.

Closely related to his rejection of black holes, Einstein believed that the exclusion of singularities might restrict the class of solutions of the field equations so as to force solutions compatible with quantum mechanics, but no such theory has ever been found.

Quantum mechanics

In the early days of quantum mechanics, Einstein tried to show that the uncertainty principle was not valid. By 1927 he had become convinced that of its utility, but he always opposed it.

EPR paradox

In the EPR paper, Einstein argued that quantum mechanics cannot be a complete realistic and local representation of phenomena, given specific definitions of "realism", "locality", and "completeness". The modern consensus is that Einstein's concept of realism is too restrictive.

Cosmological term

Einstein himself considered the introduction of the cosmological term in his 1917 paper founding cosmology as a "blunder".[2] The theory of general relativity predicted an expanding or contracting universe, but Einstein wanted a universe which is an unchanging three-dimensional sphere, like the surface of a three-dimensional ball in four dimensions.

He wanted this for philosophical reasons, so as to incorporate Mach's principle in a reasonable way. He stabilized his solution by introducing a cosmological constant, and when the universe was shown to be expanding, he retracted the constant as a blunder. This is not really much of a blunder – the cosmological constant is necessary within general relativity as it is currently understood, and it is widely believed to have a nonzero value today.

Minkowski's work

Einstein did not immediately appreciate the value of Minkowski's four-dimensional formulation of special relativity, although within a few years he had adopted it within his theory of gravitation.

Heisenberg's work

Finding it too formal, Einstein believed that Heisenberg's matrix mechanics was incorrect. He changed his mind when Schrödinger and others demonstrated that the formulation in terms of the Schrödinger equation, based on wave-particle duality was equivalent to Heisenberg's matrices.

Unified field theory

Einstein spent many years pursuing a unified field theory, and published many papers on the subject, without success.


  1. ^ Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, pp. 325–331,  
  2. ^ Wright, Karen (30 September 2004). "The Master's Mistakes". Discover Magazine. Retrieved 15 October 2009. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.