In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent.
An equivalence of categories consists of a functor between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for isomorphisms in an algebraic setting, the composition of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be naturally isomorphic to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of isomorphism of categories where a strict form of inverse functor is required, but this is of much less practical use than the equivalence concept.
Contents

Definition 1

Equivalent characterizations 2

Examples 3

Properties 4

See also 5

References 6
Definition
Formally, given two categories C and D, an equivalence of categories consists of a functor F : C → D, a functor G : D → C, and two natural isomorphisms ε: FG→I_{D} and η : I_{C}→GF. Here FG: D→D and GF: C→C, denote the respective compositions of F and G, and I_{C}: C→C and I_{D}: D→D denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.
One often does not specify all the above data. For instance, we say that the categories C and D are equivalent (respectively dually equivalent) if there exists an equivalence (respectively duality) between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices (see example below).
Equivalent characterizations
One can show that a functor F : C → D yields an equivalence of categories if and only if it is simultaneously:

full, i.e. for any two objects c_{1} and c_{2} of C, the map Hom_{C}(c_{1},c_{2}) → Hom_{D}(Fc_{1},Fc_{2}) induced by F is surjective;

faithful, i.e. for any two objects c_{1} and c_{2} of C, the map Hom_{C}(c_{1},c_{2}) → Hom_{D}(Fc_{1},Fc_{2}) induced by F is injective; and

essentially surjective (dense), i.e. each object d in D is isomorphic to an object of the form Fc, for c in C.
This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" G and the natural isomorphisms between FG, GF and the identity functors. On the other hand, though the above properties guarantee the existence of a categorical equivalence (given a sufficiently strong version of the axiom of choice in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible. Due to this circumstance, a functor with these properties is sometimes called a weak equivalence of categories (unfortunately this conflicts with terminology from homotopy theory).
There is also a close relation to the concept of adjoint functors. The following statements are equivalent for functors F : C → D and G : D → C:

There are natural isomorphisms from FG to I_{D} and I_{C} to GF.

F is a left adjoint of G and both functors are full and faithful.

G is a right adjoint of F and both functors are full and faithful.
One may therefore view an adjointness relation between two functors as a "very weak form of equivalence". Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the counit of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.
Examples

Consider the category C having a single object c and a single morphism 1_{c}, and the category D with two objects d_{1}, d_{2} and four morphisms: two identity morphisms 1_{d_{1}}, 1_{d_{2}} and two isomorphisms \alpha \colon d_{1} \to d_{2} and \beta \colon d_{2} \to d_{1}. The categories C and D are equivalent; we can (for example) have F map c to d_{1} and G map both objects of D to c and all morphisms to 1_{c}.

By contrast, the category C with a single object and a single morphism is not equivalent to the category E with two objects and only two identity morphisms as the two objects therein are not isomorphic.

Consider a category C with one object c, and two morphisms 1_{c}, f \colon c \to c. Let 1_{c} be the identity morphism on c and set f \circ f = 1. Of course, C is equivalent to itself, which can be shown by taking 1_{c} in place of the required natural isomorphisms between the functor \mathbf{I}_{C} and itself. However, it is also true that f yields a natural isomorphism from \mathbf{I}_{C} to itself. Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction.

The category of sets and partial functions is equivalent to but not isomorphic with the category of pointed sets and pointpreserving maps.^{[1]}

Consider the category C of finitedimensional real vector spaces, and the category D = \mathrm{Mat}(\mathbb{R}) of all real matrices (the latter category is explained in the article on additive categories). Then C and D are equivalent: The functor G \colon D \to C which maps the object A_{n} of D to the vector space \mathbb{R}^{n} and the matrices in D to the corresponding linear maps is full, faithful and essentially surjective.

In pointless topology the category of spatial locales is known to be equivalent to the dual of the category of sober spaces.

For two rings R and S, RMod×SMod is equivalent to (R×S)Mod.

Any category is equivalent to its skeleton.
Properties
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true:
Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.
If F : C → D is an equivalence of categories, and G_{1} and G_{2} are two inverses of F, then G_{1} and G_{2} are naturally isomorphic.
If F : C → D is an equivalence of categories, and if C is a preadditive category (or additive category, or abelian category), then D may be turned into a preadditive category (or additive category, or abelian category) in such a way that F becomes an additive functor. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.)
An autoequivalence of a category C is an equivalence F : C → C. The autoequivalences of C form a group under composition if we consider two autoequivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of C. (One caveat: if C is not a small category, then the autoequivalences of C may form a proper class (set theory) rather than a set.)
See also
References

^ Lutz Schröder (2001). "Categories: a free tour". In Jürgen Koslowski and Austin Melton. Categorical Perspectives. Springer Science & Business Media. p. 10.

Hazewinkel, Michiel, ed. (2001), "Equivalence of categories",

Mac Lane, Saunders (1998). Categories for the working mathematician. New York: Springer. pp. xii+314.
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.