World Library  
Flag as Inappropriate
Email this Article




Skeletal formula of ethylenediamine
Ball and stick model of ethylenediamine
Space-filling model of ethylenediamine
Sample of ethylenediamine in a jar
Preferred IUPAC name
Systematic IUPAC name
Other names
Abbreviations en
ChemSpider  Y
EC number 203-468-6
Jmol-3D images Image
RTECS number KH8575000
UN number 1604
Molar mass 60.10 g·mol−1
Appearance Colorless liquid[3]
Odor Ammoniacal[3]
Density 0.90 g/cm3[3]
Melting point 8 °C (46 °F; 281 K)[3]
Boiling point 116 °C (241 °F; 389 K)[3]
log P −2.057
Vapor pressure 1.3 kPa (at 20 °C)
5.8 mol Pa−1 kg−1
172.59 J K−1 mol−1
202.42 J K−1 mol−1
−63.55–−62.47 kJ mol−1
−1.8678–−1.8668 MJ mol−1
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H226, H302, H312, H314, H317, H334
P261, P280, P305+351+338, P310
Corrosive C
R-phrases R10, R21/22, R34, R42/43
S-phrases (S1/2), S26, S36/37/39, S45
NFPA 704
Flash point 34 °C (93 °F; 307 K)[3]
385 °C (725 °F; 658 K)[3]
Explosive limits 2.7–16%
Lethal dose or concentration (LD, LC):
LD50 (Median dose)
500 mg/kg (oral, rat)
470 mg/kg (oral, guinea pig)
1160 mg/kg (oral, rat)[4]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 10 ppm (25 mg/m3)[5]
REL (Recommended)
TWA 10 ppm (25 mg/m3)[5]
1000 ppm[5]
Related compounds
Related alkanamines
1,2-Diaminopropane, 1,3-Diaminopropane
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 Y  (: Y/N?)

Ethylenediamine (abbreviated as en when a formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a strongly basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998.[6] Ethylenediamine readily reacts with moisture in humid air to produce a corrosive, toxic and irritating mist, to which even short exposures can cause serious damage to health (see safety).


  • Synthesis 1
  • Applications 2
    • Precursor to chelation agents, drugs, and agrochemicals 2.1
    • Pharmaceutical ingredient 2.2
    • Role in polymers 2.3
    • Tetraacetylethylenediamine 2.4
    • Other applications 2.5
  • Polyamines derived from or related to ethylenamine 3
  • Coordination chemistry 4
  • Safety 5
  • References 6
  • External links 7


Ethylenediamine is manufactured industrially from 1,2-dichloroethane and ammonia under pressure at 180 °C in an aqueous medium:[6][7]

In this reaction hydrogen chloride is generated, which forms a salt with the amine. The amine is liberated by addition of sodium hydroxide and can then be recovered by rectification. Diethylenetriamine (DETA) and triethylenetetramine (TETA) are formed as by-products.

Another industrial route to ethylenediamine involves the reaction of ethanolamine and ammonia:[8]

This process involves passing the gaseous reactants over a bed of nickel heterogeneous catalysts.


Ethylenediamine is used in large quantities for production of many industrial chemicals. It forms derivatives with carboxylic acids (including fatty acids), nitriles, alcohols (at elevated temperatures), alkylating agents, carbon disulfide, and aldehydes and ketones. Because of its bifunctional nature, having two amines, it readily forms heterocycles such as imidazolidines.

Precursor to chelation agents, drugs, and agrochemicals

A most prominent derivative of ethylenediamine is the chelating agent EDTA, which is derived from ethylenediamine via a Strecker synthesis involving cyanide and formaldehyde. Hydroxyethylethylenediamine is another commercially significant chelating agent.[6] Numerous bio-active compounds and drugs contain the N-CH2-CH2-N linkage, including some antihistamines.[9] Salts of ethylenebisdithiocarbamate are commercially significant fungicides under the brand names Maneb, Mancozeb, Zineb, and Metiram. Some imidazoline-containing fungicides are derived from ethylenediamine.[6]

Pharmaceutical ingredient

Ethylenediamine is an ingredient in the common bronchodilator drug aminophylline, where it serves to solubilize the active ingredient theophylline. Ethylenediamine has also been used in dermatologic preparations, but has been removed from some because of causing contact dermatitis.[10] When used as a pharmaceutical excipient, after oral administration its bioavailability is about 0.34, due to a substantial first-pass effect. Less than 20% is eliminated by urinal excretion.[11]

Role in polymers

Ethylenediamine, because it contains two amine groups, is a widely used precursor to various polymers. Condensates derived from formaldehyde are plasticizers. It is widely used in the production of polyurethane fibers. The PAMAM class of dendrimers are derived from ethylenediamine.[6]


The bleaching activator tetraacetylethylenediamine is generated from ethylenediamine. The derivative N,N-ethylenebis(stearamide) (EBS) is a commercially significant mold-release agent and a surfactant in gasoline and motor oil.

Other applications

Polyamines derived from or related to ethylenamine

Ethylenediamine is the first member of the so-called polyethylene amines, other members being:

  • Diethylenetriamine, abbreviated dien or DETA, (H2N-CH2CH2-NH-CH2CH2-NH2, an analog of diethylene glycol)
  • Triethylenetetramine, abbreviated trien or TETA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2)
  • Tetraethylenepentamine, abbreviated TEPA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2),
  • Pentaethylenehexamine, abbreviated PEHA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2), up to polyethylene amine. Similarly piperazine is an analogue of dioxane.

Related derivatives of ethylenediamine include tetramethylethylenediamine (abbreviated TMEDA), (CH3)2N-CH2CH2-N(CH3)2 and tetraethylethylenediamine (abbreviated TEEDA) (C2H5)2N-CH2CH2-N(C2H5)2.

Chiral analogues of ethylenediamine include 1,2-diaminopropane and trans-diaminocyclohexane.

Coordination chemistry

Ethylenediamine is a well-known 3+]3[Co(ethylenediamine) is an archetypical chiral tris-chelate complex. The salen ligands, some of which are used in catalysis, are derived from the condensation of salicylaldehydes and ethylenediamine.


Ethylenediamine, like ammonia and other low-molecular weight amines, is a skin and respiratory irritant. Unless tightly contained, liquid ethylenediamine will release toxic and irritating vapors into its surroundings, especially on heating. The vapors react with moisture in humid air to form a characteristic white mist, which is extremely irritating to skin, eyes, lungs and mucus membranes. Exposure to a relatively small amount of vapor or mist by inhalation can seriously damage health and may even result in death.[12] Ethylenediamine has a half-life of about 30 minutes in a small volume of distribution of 0.133 liters/kg.


  1. ^ "ethylenediamine - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 16 September 2004. Identification and Related Records. Retrieved 3 May 2012. 
  2. ^ "32007R0129". European Union. 12 February 2007. Annex II. Retrieved 3 May 2012. 
  3. ^ a b c d e f g Record in the GESTIS Substance Database of the IFA
  4. ^ "Ethylenediamine". Immediately Dangerous to Life and Health.  
  5. ^ a b c "NIOSH Pocket Guide to Chemical Hazards #0269".  
  6. ^ a b c d e Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag, Weinheim. doi:10.1002/14356007.a02_001
  7. ^ Hans-Jürgen Arpe, Industrielle Organische Chemie, 6. Auflage (2007), Seite 245, Wiley VCH
  8. ^ Hans-Jürgen Arpe, Industrielle Organische Chemie, 6. Auflage (2007), Seite 275, Wiley VCH
  9. ^ Kotti, S. R. S. S.; Timmons, C. and Li, G. (2006). "Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry". Chemical Biology & Drug Design 67 (2): 101–114.  
  10. ^ Hogan DJ. (January 1990). "Allergic contact dermatitis to ethylenediamine. A continuing problem.".  
  11. ^ Zuidema J. (1985-08-23). "Ethylenediamine, profile of a sensitizing excipient.". Pharmacy World & Science 7 (4): 134–40.  
  12. ^ Material Safety Data Sheet

External links

  • IRIS EPA Ethylenediamine
  • CDC - NIOSH Pocket Guide to Chemical Hazards
  • Chemical data
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.