World Library  
Flag as Inappropriate
Email this Article

Exchange operator

Article Id: WHEBN0003426973
Reproduction Date:

Title: Exchange operator  
Author: World Heritage Encyclopedia
Language: English
Subject: Coulomb operator, Fock matrix, Fock state, Quantum chemistry, Hartree–Fock method
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Exchange operator

In quantum mechanics, the exchange operator \hat{P} is a quantum mechanical operator that acts on states in Fock space. The exchange operator acts by switching the labels on any two identical particles described by the joint position quantum state \left|x_1, x_2\right\rangle.[1] Since the particles are identical, the notion of exchange symmetry requires that the exchange operator be unitary.

Contents

  • Construction 1
  • Quantum chemistry 2
  • See also 3
  • References 4
  • External links 5

Construction

In three or higher dimensions, the exchange operator can represent a literal exchange of the positions of the pair of particles by motion of the particles in an adiabatic process, with all other particles held fixed. Such motion is often not carried out in practice. Rather, the operation is treated as a "what if" similar to a parity inversion or time reversal operation. Consider two repeated operations of such a particle exchange:

\hat{P}^2\left|x_1, x_2\right\rangle = \hat{P}\left|x_2, x_1\right\rangle = \left|x_1, x_2\right\rangle

Therefore \hat{P} is not only unitary but also an operator square root of 1, which leaves the possibilities

\hat{P}\left|x_1, x_2\right\rangle = \pm \left|x_1, x_2\right\rangle\,.

Both signs are realized in nature. Particles satisfying the case of +1 are called bosons, and particles satisfying the case of −1 are called fermions. The spin–statistics theorem dictates that all particles with integer spin are bosons whereas all particles with half-integer spin are fermions.

The exchange operator commutes with the Hamiltonian and is therefore a conserved quantity. Therefore it is always possible and usually most convenient to choose a basis in which the states are eigenstates of the exchange operator. Such a state is either completely symmetric under exchange of all identical bosons or completely antisymmetric under exchange of all identical fermions of the system. To do so for fermions, for example, the antisymmetrizer builds such a completely antisymmetric state.

In 2 dimensions, the adiabatic exchange of particles is not necessarily possible. Instead, the eigenvalues of the exchange operator may be complex phase factors (in which case \hat{P} is not Hermitian), see anyon for this case. The exchange operator is not well defined in a strictly 1-dimensional system, though there are constructions of 1-dimensional networks that behave as effective 2-dimensional systems.

Quantum chemistry

A modified exchange operator is defined in the Hartree–Fock method of quantum chemistry, in order to estimate the exchange energy arising from the exchange statistics described above. In this method, one often defines an energetic exchange operator as:

\hat K_j (x_1) f(x_1)= \phi_j(x_1) \int { \frac{\phi_j^*(x_2)f(x_2)}{r_{12}}dx_2}

where \hat K_j (x_1) is the one-electron exchange operator, and f(x_1) , f(x_2) are the one-electron wavefunctions acted upon by the exchange operator as functions of the electron positions, and \phi_j(x_1) and \phi_j(x_2) are the one-electron wavefunction of the jth electron as functions of the positions of the electrons. Their separation is denoted r12.[2] The labels 1 and 2 are only for a notational convenience, since physically there is no way to keep track of "which electron is which".

See also

References

  1. ^ J.S. Townsend (2000). A modern approach to quantum mechanics. International series in pure and applied physics 69 (2 ed.). University Science Books. p. 342.  
  2. ^ Levine, I.N., Quantum Chemistry (4th ed., Prentice Hall 1991) p.403. ISBN 0-205-12770-3
  • K. Kitaura, K. Morokuma (2004). "A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation". International journal of quantum chemistry 10 (2) (Wiley). pp. 325–340.  
  • Bylander, D. M.; Kleinman, Leonard (1990). "Good semiconductor band gaps with a modified local-density approximation". Physical Review B (Condensed Matter) 41 (11). pp. 7868–7871.  
  • A.P. Polychronakos (1992). "Exchange Operator Formalism for Integrable Systems of Particles" (PDF). Phys.Rev.Lett 69. pp. 703–705.  
  • "On a new exchange potential" 7 (3). Acta Physica Academiae Scientiarum Hungaricae. 1957. pp. 357–364. 
  • R.K Nesbet (1958). "The Heisenberg exchange operator for ferromagnetic and antiferromagnetic systems". Annals of Physics 4 (1) (Lincoln, Massachusetts, USA: Elsevier). pp. 87–103. 
  • "The Hartree-Fock Equation". 

External links

  • , P. HaynesIdentical particles2.3.
  • Multiple Particle StatesChapter 12,
  • , J. DenkerExchange of Identical and Possibly Indistinguishable Particles
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.