World Library  
Flag as Inappropriate
Email this Article

Fenske equation

Article Id: WHEBN0007765005
Reproduction Date:

Title: Fenske equation  
Author: World Heritage Encyclopedia
Language: English
Subject: Distillation, Continuous distillation, Fractional distillation, Spinning band distillation, Dalton's law
Collection: Distillation, Equations
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Fenske equation

Fractionation at total reflux

The Fenske equation in continuous fractional distillation is an equation used for calculating the minimum number of theoretical plates required for the separation of a binary feed stream by a fractionation column that is being operated at total reflux (i.e., which means that no overhead product distillate is being withdrawn from the column).

The equation was derived in 1932 by Merrell Fenske, a professor who served as the head of the chemical engineering department at the Pennsylvania State University from 1959 to 1969.[1]

When designing large-scale, continuous industrial distillation towers, it is very useful to first calculate the minimum number of theoretical plates required to obtain the desired overhead product composition.

Contents

  • Common versions of the Fenske equation 1
  • Another form of the Fenske equation 2
  • See also 3
  • References 4
  • External links 5

Common versions of the Fenske equation

This is one of the many different but equivalent versions of the Fenske equation valid only for binary mixtures:[2][3][4][5][6]

\ N = \frac{\log \, \bigg[ \Big(\frac{X_d}{1-X_d}\Big)\Big(\frac{1-X_b}{X_b} \Big) \bigg]}{\log \, \alpha_{avg}}

where:

  • N is the minimum number of theoretical plates required at total reflux (of which the reboiler is one),
  • X_d  is the mole fraction of more volatile component in the overhead distillate,
  • X_b  is the mole fraction of more volatile component in the bottoms,
  • \alpha_{avg}  is the average relative volatility of the more volatile component to the less volatile component.

For a multi-component mixture the following formula holds. For ease of expression, the more volatile and the less volatile components are commonly referred to as the light key (LK) and the heavy key (HK), respectively. Using that terminology, the above equation may be expressed as:[3]

\ N = \frac{\log \, \bigg[ \Big(\frac{LK_d}{HK_d}\Big)\Big(\frac{HK_b}{LK_b} \Big) \bigg]}{\log \, \alpha_{avg}}

or also:

\ N = \frac{\log \, \bigg[ \Big(\frac{LK_d}{1-LK_d}\Big)\Big(\frac{1-LK_b}{LK_b} \Big) \bigg]}{\log \, \alpha_{avg}}

If the relative volatility of the light key to the heavy key is constant from the column top to the column bottom, then \alpha_{avg.} is simply \alpha. If the relative volatility is not constant from top to bottom of the column, then the following approximation may be used:[2]

\alpha_{avg.} = \sqrt {(\alpha_t)(\alpha_b)}

where:

  • \alpha_t is the relative volatility of light key to heavy key at top of column,
  • \alpha_b is the relative volatility of light key to heavy key at bottom of column.

The above forms of the Fenske equation can be modified for use in the total reflux distillation of multi-component feeds.[5] It is also helpful in solving liquid–liquid extraction problems, because an extraction system can also be represented as a series of equilibrium stages and relative solubility can be substituted for relative volatility.

Another form of the Fenske equation

A derivation of another form of the Fenske equation for use in gas chromatography is available on the U.S. Naval Academy's web site. Using Raoult's law and Dalton's Law for a series of condensation and evaporation cycles (i.e., equilibrium stages), the following form of the Fenske equation is obtained:

\ \frac{Z_a}{Z_b} = \frac{X_a}{X_b} \left (\frac{P^0_a}{P^0_b} \right) ^N

where:

  • N  is the number of equilibrium stages,
  • Z_n  is the mole fraction of component n in the vapor phase,
  • X_n  is the mole fraction of component n in the liquid phase,
  • {P^0_n}  is the vapor pressure of pure component n.

See also

References

  1. ^ M.R. Fenske (1932). Ind.Eng. Chem., Vol. 24: 482.
  2. ^ a b Chapter 4, (From the website of Cal Poly Pomona in California. Lecture notes of Professor Thuan Ke Nguyen for the course entitled CHE313, Mass Transfer. See page 4-42.)
  3. ^ a b (See page 200.)
  4. ^ (See equations 3.4 and 3.5 on page 106.)
  5. ^ a b
  6. ^ (See equation 7.88 on page 375.)

External links

  • Lecture Notes (R.M. Price, Christian Brothers University, Tennessee)
  • Studies in Chemical Process Design and Synthesis, Y. A. Liu, T.E. Quantrille, and S. Chengt, Ind. Eng. Chem. Res., Volume 29, 1990
  • Multi-component Distillation (M.B. Jennings, San Jose State University)

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.