World Library  
Flag as Inappropriate
Email this Article

Force concentration

Article Id: WHEBN0006729973
Reproduction Date:

Title: Force concentration  
Author: World Heritage Encyclopedia
Language: English
Subject: Blitzkrieg, Economy of force, Oblique order, Military threat, Force dispersal
Collection: Military Doctrines
Publisher: World Heritage Encyclopedia

Force concentration

Force concentration is the practice of concentrating a military force so as to bring to bear such overwhelming force against a portion of an enemy force that the disparity between the two forces alone acts as a force multiplier in favour of the concentrated forces.


  • Mass of decision 1
  • Lanchester's laws 2
  • Mathematical model 3
    • Lanchester's laws and business strategy 3.1
  • Hypothetical example 4
  • History 5
    • Disposition of Roman Legions 5.1
    • Guerrilla warfare 5.2
    • Aerial warfare 5.3
    • Blitzkrieg 5.4
    • Defence of France 1944 5.5
    • Cold War and beyond 5.6
  • See also 6
  • References 7

Mass of decision

Force concentration was integral to the Prussian military operational doctrine of the mass of decision, the target of which was to cause disproportionate losses on the enemy and therefore destroy the enemy's ability to fight.

From an empirical examination of past battles, the Prussian military theorist Carl von Clausewitz was able to conclude:-

...we may infer, that it is very difficult in the present state of Europe, for the most talented general to gain a victory over an enemy double his strength. Now if we see double numbers prove such a weight in the scale against the greatest generals, we may be sure, that in ordinary cases, in small as well as great combats, an important superiority in numbers but which need not be over two to one, will be sufficient to ensure the victory, however disadvantageous other circumstances maybe...
On War, Book 3, "Superiority of numbers".

Lanchester's laws

During the First World War Frederick W. Lanchester formulated Lanchester's laws that calculated that the combat power of a military force is the square of the number of members of that unit so that the advantage a larger force has is the difference of the squares of the two forces,[1][2] i.e.

  • If force A has say 2 units and force B has 3 units, then the advantage force B has is 3²−2² or 5.
  • If force A still has 2 units and force B has 4 units then the advantage force B has is 4²−2² or 12.
  • If force A still has 2 units and force B has 5 units then the advantage force B has is 5²−2² or 21.

So a two to one advantage in units will quadruple the firepower and inflict four times the punishment, three times as many units will have nine times the combat ability and so on. Basically the greater the numerical superiority that one side has, the greater the damage he can inflict on the other side and the smaller the cost to himself.

Mathematical model

Idealized simulation of two forces damaging each other, neglecting all other circumstances than the 1) size of army 2) rate of damaging (killing). The plots illustrate the principle of Lanchester's laws.

There is no battlefield where battle tactics can be reduced to a pure race of delivering damage while ignoring all other circumstances. However, in some types of warfare, such as a battle for air superiority, confrontation of armoured forces in World War II or battleship-based naval battles, the ratio of armed forces could become the dominant factor. In that case, equations stated in Lanchester's laws model the potential outcome of the conflict fairly well. Balance between the two opponent forces incline to the side of superior force by the factor of \left ( \frac{Power_2}{Power_1} \right ) ^ 2 . For example, two tanks against one tank are superior by a factor of four.

This result could be understood if the rate of damage (considered as the only relevant factor in the model) is solved as a system of differential equations. The rate in which each army delivers damage to the opponent is proportional to the number of units – in the model each unit shoots at a given rate – and to the ability or effectiveness of each surviving unit to kill the enemy. The sizes of both armies decrease at different rates depending on the size of the other, and casualties of the superior army approach zero as the size of the inferior army approaches zero. This can be written in equations:

\frac{d}{d t}N_1=-c_2 N_2

\frac{d}{d t}N_2=-c_1 N_1

  • N_1 is the number of units in the first army
  • \frac{d}{d t}N_2 is the rate in which army 1 damages army 2 (affected by unit quality or other advantage)
  • c_1 is a coefficient which describes army 1's ability to inflict damage per unit per time.

The above equations result in the following homogeneous second-order linear ordinary differential equations:

\frac{d^2}{d t^2}N_1 = c_2 c_1 N_1

\frac{d^2}{d t^2}N_2 = c_2 c_1 N_2

To determine the time evolution of N_1 and N_2, these equations need to be solved using the known initial conditions (the initial size of the two armies prior to combat). See for the general solution of second-order linear differential equations.

This model clearly demonstrates (see picture) that an inferior force can suffer devastating losses even when the superior force is only slightly larger, in case of equal per-unit qualitative capabilities: in the first example (see picture, top plot) the superior force starts only 40% larger, yet it brings about the total annihilation of the inferior force while suffering only 40% losses. Quality of the force may outweigh the quantitative inferiority of the force (middle plot) when it comes to battle outcomes.

Lanchester's laws and business strategy

In the 1960s, Lanchester's laws were popularised by the business consultant Nobuo Taoka and found favour with a segment of the Japanese business community.[3] The laws were used to formulate plans and strategies to attack market share. The "Canon–Xerox copier battle" in the UK, for example, reads like a classic people's war campaign. In this case, the laws supported Canon's establishment of a "revolutionary base area" by concentrating resources on a single geographical area until dominance could be achieved, in this case in Scotland. After this, they carefully defined regions to be individually attacked again with a more focused allocation of resources. The sales and distribution forces built up to support these regions in turn were used in the final "determined push in London with a numerically larger salesforce".

Hypothetical example

Imagine two equally matched sides each with two infantry and two armoured divisions. Now visualize a straight defensive line with the two infantry and two armoured divisions, deployed equally along the length of the line. Hypothetically the attacker can win by concentrating his armour at one point (with his infantry holding the rest of the line).

Traditionally it is accepted that a defending force has a 3:1 advantage over an attacker. In other words, a defending force can hold off three times its own number of attackers. Imagine, then, that the defensive line is four units in length, so that each portion of the line can be held by a single defending division. Assume that they can take on the oncoming armour on equal terms (with ATGW's, pre-prepared artillery fireplans etc.) and that they have had time to dig in. This single unit should be able to hold off 3 times its own number. With the attacking force having only two armoured units, the defenders should have the advantage.

However, as the defensive line increases from the imaginary four units in length, the advantage slips from the defender to the attacker. The longer the line to be held, the thinner the defenders will be spread. With the defender having sacrificed his mobility to dig in, the attacker can choose where and when to attack. Either penetrating the line or turning a flank and thus being able to destroy the enemy in detail. Thus, concentrating two divisions and attacking at a single point generates a far greater force than is achieved by spreading two divisions into a line and pushing forward on a broad front.

Concentration of force in this scenario requires mobility (to permit rapid concentration) and power (to be effective in combat once concentrated). The tank embodies these two properties and for the past seventy years has been seen as the primary weapon of conventional warfare.

No one side has a monopoly on military art, and what is obvious to one side is obvious to the other. A far more likely scenario is that both forces will choose to use their infantry to hold a line and to concentrate their armour, and rather than a line in the sand, the infantry line would be more of a trip wire, to warn of where the enemy has chosen to launch his attack, with the armoured forces jostling to find the right place to attack or counterattack. Other considerations, then, must come into play for a decisive blow to be achieved.

Such considerations may be economic or political in nature, e.g. one side is unable or unwilling to allow the sanctity of its soil to be violated, and thus insists on defending a line on a map.


Force concentration has been a part of the military commander's repertoire since the dawn of warfare, though maybe not by that name. Commanders have always tried to have the advantage of numbers. The declined flank for example, was one way of achieving a force concentration during a battle.

Disposition of Roman Legions

At the beginning of the Roman Empire, in the first years of the first millennium, Rome's Legions were grouped into battle groups of three or four Legions, on the Rhine, on the Danube and in the Levant. By the third century A.D. these Legions had been dispersed along the frontiers in frontier fortifications, and within the Empire as internal security troops. In the first case Rome's military might, was disposed in a manner in which it had a concentration of force capable of offensive action. In the second case it could defend effectively but could only attack and counterattack with difficulty. In the first instance Rome was confident and aggressive with the possibility that the entire world would fall to them. In the second instance, Rome was in decline, fearful that what was theirs would be snatched from them; as indeed it was.

Guerrilla warfare

As they are usually the smaller in number an appreciation of force concentration is especially important to guerrilla forces, who find it prudent initially to avoid confrontations with any large concentrations of government/occupying forces. However, through the use of small attacks, shows of strength, atrocities etc. in out of the way areas, they may be able to lure their opponents into spreading themselves out into isolated outposts, linked by convoys and patrols, in order to control territory. The guerrilla forces may then attempt to use force concentrations of their own; using unpredictable and unexpected concentrations of their forces, to destroy individual patrols, convoys and outposts. In this way they can hope to defeat their enemy in detail. Regular forces may act in order to invite such attacks by concentrations of enemy guerrillas, in order to bring an otherwise elusive enemy to battle, relying on its own superior training and firepower to win such battles.

Aerial warfare

During World War I the Central Powers became increasingly unable to meet the Allied Powers in terms of outright number of fighter aircraft. To overcome this shortcoming rather than deploying their fighters uniformly along the fronts, the Germans concentrated their fighters into large mobile Jagdgeschwader formations, the most famous of which was Manfred von Richthofen's Flying Circus, that could be moved rapidly and unexpectedly to different points along the front. This allowed them to create a local superiority in numbers, that could achieve air supremacy in a local area in support of ground operations or just to destroy Allied fighters in the overall strategy of attrition.

Similarly the Second World War Big Wing was one tactic that was evolved to cause maximum damage to the enemy with the minimum of casualties.


Modern armour warfare doctrine was developed and established during the run up to World War II. A fundamental key to conventional Warfare is the concentration of force at a particular point (the [der] Schwerpunkt). Concentration of force increases the chance of victory in a particular engagement. Correctly chosen and exploited, victory in a given engagement or a chain of small engagements is often sufficient to win the battle.

Defence of France 1944

The Nazi defence of France in 1944 could have followed one of the two models offered in the hypothetical example. The first was to distribute the available forces along the Atlantic Wall and throw the invading Allies back into the sea where and when they landed. The second was to keep the German Panzers concentrated and well away from the beaches. Territory could then be conceded to draw the invasion force away from their lodgement areas from which it would be nipped off by the cutting of their supply lines and then defeated in detail. The superiority of concentrated forces using maneuver warfare in the hypothetical example carried the proviso of "all other things being equal"; by 1944 things were far from being equal.

With Allied air superiority not only were major force concentrations vulnerable to tactical and heavy bombers themselves, but so were the vital assets—bridges, marshalling yards, fuel depots, etc.—needed to give them mobility. As it was in this case, the blitzkrieg solution was the worst of both worlds, neither being far enough forward to maximise the use of their defensive fortifications, nor far enough away and concentrated to give it room to manoeuvre.

Similarly, for the Japanese in the final stages of the Island hopping campaign of the Pacific War, with Allied naval and air superiority and non-existent room to manoeuvre, neither a water's edge defensive strategy nor a holding back and counterattacking strategy could succeed.

Cold War and beyond

Burnt out vehicles on the Highway of Death from the 1990 Gulf war, confirming the fate of massed tanks operating without aircover.

For much of the Cold War, to combat the overwhelming Soviet supremacy in armour and men, NATO planned to use much of West German territory as a flood plain in a defence in depth to absorb and disperse the momentum of a massed Soviet attack. Mobile anti-tank teams and counterattacking NATO armies would seek to cut off the leading Soviet echelons from their supporting echelons and then reduce the isolated elements with superior air power and conventional munitions, and if this failed, with nuclear munitions.

In an effort to avoid the use of nuclear munitions in an otherwise conventional war, the US invested heavily in a series of stand off "Assault Breaker" air-launched and artillery weapon systems, such as the MLRS, ICMs, M712 Copperhead, and the BLU-108 submunition. Against such weapons massed concentrations of armour and troops would no longer be a virtue but a liability. From the mid eighties and onward a much greater level of force dispersal became desirable rather than concentration.

The model for forces in the future it seems, is for forces no longer to be concentrated in space and location, but to be united in action and objective, not least by doctrine and training but also, for those who can afford it at least, through data links creating a netcentric concentration of force rather than a physical one.

See also


  • Carl von Clausewitz, On War, online version available, especially Book 3, Chapter VIII ("Superiority of Numbers"), and Chapter XI ("Assembly of Forces in Space").
  • Dunnigan, James F. How To Make War, 2003, HarperCollins Publishers, New York.
  1. ^ Article at Lanchester Press
  2. ^ Lanchester, F.W., "Mathematics in Warfare" in The World of Mathematics, Vol. 4 (1956) Ed. Newman, J.R., Simon and Schuster, 2138–2157
  3. ^ A British Military Theory Finds Favour Among Japan's Businesses
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.