World Library  
Flag as Inappropriate
Email this Article

Hilbert cube

Article Id: WHEBN0000216389
Reproduction Date:

Title: Hilbert cube  
Author: World Heritage Encyclopedia
Language: English
Subject: Descriptive set theory, Locally compact space, Infinite-dimensional Lebesgue measure, Deformation retract, Cylinder set
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Hilbert cube

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).

Contents

  • Definition 1
  • The Hilbert cube as a metric space 2
  • Properties 3
  • Notes 4
  • References 5

Definition

The Hilbert cube is best defined as the topological product of the intervals [0, 1/n] for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence \lbrace 1/n \rbrace_{n\in\mathbb{N}}.

The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval [0, 1]. In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.

If a point in the Hilbert cube is specified by a sequence \lbrace a_n \rbrace with 0 \leq a_n \leq 1/n, then a homeomorphism to the infinite dimensional unit cube is given by h(a)_n = n\cdot a_n.

The Hilbert cube as a metric space

It is sometimes convenient to think of the Hilbert cube as a metric space, indeed as a specific subset of a separable Hilbert space (i.e. a Hilbert space with a countably infinite Hilbert basis). For these purposes, it is best not to think of it as a product of copies of [0,1], but instead as

[0,1] × [0,1/2] × [0,1/3] × ···;

as stated above, for topological properties, this makes no difference. That is, an element of the Hilbert cube is an infinite sequence

(xn)

that satisfies

0 ≤ xn ≤ 1/n.

Any such sequence belongs to the Hilbert space 2, so the Hilbert cube inherits a metric from there. One can show that the topology induced by the metric is the same as the product topology in the above definition.

Properties

As a product of compact Hausdorff spaces, the Hilbert cube is itself a compact Hausdorff space as a result of the Tychonoff theorem. The compactness of the Hilbert cube can also be proved without the Axiom of Choice by constructing a continuous function from the usual Cantor set onto the Hilbert cube.

In ℓ2, no point has a compact neighbourhood (thus, ℓ2 is not locally compact). One might expect that all of the compact subsets of ℓ2 are finite-dimensional. The Hilbert cube shows that this is not the case. But the Hilbert cube fails to be a neighbourhood of any point p because its side becomes smaller and smaller in each dimension, so that an open ball around p of any fixed radius e > 0 must go outside the cube in some dimension.

Every subset of the Hilbert cube inherits from the Hilbert cube the properties of being both metrizable (and therefore T4) and second countable. It is more interesting that the converse also holds: Every second countable T4 space is homeomorphic to a subset of the Hilbert cube.

Every Gδ-subset of the Hilbert cube is a Polish space, a topological space homeomorphic to a separable and complete metric space. Conversely, every Polish space is homeomorphic to a Gδ-subset of the Hilbert cube.[1]

Notes

  1. ^ Srivastava, pp. 55

References

  • Srivastava, Sashi Mohan (1998). A Course on Borel Sets.  
  •  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.