World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000679582
Reproduction Date:

Title: Hypocenter  
Author: World Heritage Encyclopedia
Language: English
Subject: 2011 Tohoku earthquake and tsunami, Seismic wave, June 2011 Christchurch earthquake, Nagasaki Atomic Bomb Museum, 2011 Guerrero earthquake
Collection: Geometric Centers, Seismology
Publisher: World Heritage Encyclopedia


Hypocenter (Focus) and epicenter of an earthquake

The hypocenter (literally: 'below the center' from the Greek: ὑπόκεντρον) refers to the site of an earthquake or a surface or subsurface nuclear explosion. It is a synonym of the focus;.[1] (Confusingly, for a nuclear airburst the term hypocenter is a synonym for ground zero.)


An earthquake's hypocenter is the position where the strain energy stored in the rock is first released, marking the point where the fault begins to rupture.[1] This occurs directly beneath the epicenter, at a distance known as the focal or hypocentral depth.[1]

The focal depth can be calculated from measurements based on seismic wave phenomena. As with all wave phenomena in physics, there is uncertainty in such measurements that grows with the wavelength so the focal depth of the source of these long-wavelength (low frequency) waves is difficult to determine exactly. Very strong earthquakes radiate a large fraction of their released energy in seismic waves with very long wavelengths and therefore a stronger earthquake involves the release of energy from a larger mass of rock.

Computing the hypocenters of foreshocks, main shock, and aftershocks of earthquakes allows the three-dimensional plotting of the fault along which movement is occurring.[2] The expanding wavefront from the earthquake's rupture propagates at a speed of several kilometers per second, this seismic wave is what is measured at various surface points in order to geometrically determine an initial guess as to the hypocenter. The wave reaches each station based upon how far away it was from the hypocenter. A number of things need to be taken into account, most importantly variations in the waves speed based upon the materials that it is passing through.[3] With adjustments for velocity changes, the initial estimate of the hypocenter is made, then a series of linear equations is set up, one for each station. The equations express the difference between the observed arrival times and those calculated from the initial estimated hypocenter. These equations are solved by the method of least squares which minimizes the sum of the squares of the differences between the observed and calculated arrival times, and a new estimated hypocenter is computed. The system iterates until the location is pinpointed within the margin of error for the velocity computations;[3] this is known as linear regression.


  1. ^ a b c The hypocenter is the point within the earth where an earthquake rupture starts. The epicenter is the point directly above it at the surface of the Earth. Also commonly termed the focus. "Earthquake Glossary - hypocenter". United States Geological Survey. Archived from the original on 15 March 2010. 
  2. ^ Kennelly, Patrick J. and Stickney, Michael C. (2000). "Using GIS for Visualizing Earthquake Epicenters, Hypocenters, Faults and Lineaments in Montana". Digital Mapping Techniques '00 -- Workshop Proceedings. United States Geological Survey. USGS Open-File Report 00-325. Archived from the original on 23 March 2004. 
  3. ^ a b "FAQs - Measuring Earthquakes: Q: How do seismologists locate an earthquake?". USGS Earthquake Hazrads Program. United States Geological Survey. 

External links

  • The dictionary definition of hypocenter at Wiktionary
  • Media related to at Wikimedia Commons
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.