World Library  
Flag as Inappropriate
Email this Article

Juan de Fuca Plate

Article Id: WHEBN0000493890
Reproduction Date:

Title: Juan de Fuca Plate  
Author: World Heritage Encyclopedia
Language: English
Subject: Geology of the Pacific Northwest, NEPTUNE, Explorer Ridge, Farallon Plate, Pacific Plate
Collection: Geology of the Pacific Ocean, Tectonic Plates
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Juan de Fuca Plate

Juan de Fuca Plate
Type Minor
Approx. Area 250,000 km2[1]
Movement1 north-east
Speed1 26mm/year
Features Pacific Ocean
1Relative to the African Plate
Cutaway of the Juan de Fuca Plate. USGS image

The Juan de Fuca Plate is a tectonic plate generated from the Juan de Fuca Ridge and is subducting under the northerly portion of the western side of the North American Plate at the Cascadia subduction zone. It is named after the explorer of the same name.

One of the smallest of Earth's tectonic plates, the Juan de Fuca Plate is a remnant part of the once-vast Farallon Plate, which is now largely subducted underneath the North American Plate.

Contents

  • Origins 1
  • Extent 2
  • Volcanism 3
  • Earthquakes 4
  • Carbon sequestration potential 5
  • See also 6
  • References 7
  • External links 8

Origins

The Juan de Fuca plate system has its origins with Panthalassa's oceanic basin and crust. This oceanic crust has primarily been subducted under the North American plate, and the Eurasian Plate.

Panthalassa's oceanic plate remnants are understood to be the Juan de Fuca, Gorda, Cocos and the Nazca plates, all four of which were part of the Farallon Plate.

Extent

A map of the Juan de Fuca Plate

The Juan de Fuca plate is bounded on the south by the Blanco Fracture Zone (running northwest off the coast of Oregon), on the north by the Nootka Fault (running southwest off Nootka Island, near Vancouver Island, British Columbia) and along the west by the Pacific Plate (which covers most of the Pacific Ocean and is the largest of Earth's tectonic plates).

The Juan de Fuca plate itself has since fractured into three pieces, and the name is applied to the entire plate in some references, but in others only to the central portion.

The three fragments are differentiated as such : the piece to the south is known as the Gorda Plate and the piece to the north is known as the Explorer Plate. The separate pieces are demarcated by the large offsets of the undersea spreading zone.

Volcanism

This subducting plate system has formed the Cascade Range, the Cascade Volcanic Arc, and the Pacific Ranges, along the west coast of North America from southern British Columbia to northern California. These in turn are part of the Pacific Ring of Fire, a much larger-scale volcanic feature that extends around much of the rim of the Pacific Ocean.

Earthquakes

The last megathrust earthquake at the Cascadia subduction zone was the 1700 Cascadia earthquake, estimated to have a moment magnitude of 8.7 to 9.2. Based on carbon dating of local tsunami deposits, it occurred around 1700. As reported in National Geographic on 8 December 2003, Japanese records indicate the quake caused a tsunami in Japan, which occurred on 26 January 1700.

In 2008, small earthquakes were observed within the plate. The unusual quakes were described as "more than 600 quakes over the past 10 days in a basin 150 miles southwest of Newport". The quakes were unlike most quakes in that they did not follow the pattern of a large quake, followed by smaller aftershocks; rather, they were simply a continual deluge of small quakes. Furthermore, they did not occur on the tectonic plate boundary, but rather in the middle of the plate. The subterranean quakes were heard on hydrophones, and scientists described the sounds as similar to thunder, and unlike anything heard previously.[2]

Carbon sequestration potential

The basaltic formations of this plate could potentially be suitable for long-term CO2 sequestration as part of a carbon capture and storage (CCS) system. Injection of CO2 would lead to the formation of stable carbonates. It is estimated that 100 years of US carbon emissions (at current rate) could be stored securely, without risk of leakage back into the atmosphere.[3][4]

See also

References

  1. ^ http://geology.about.com/library/bl/blplate_size_table.htm
  2. ^
  3. ^
  4. ^ Sub-seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America, Energy Procedia, Volume 37, 2013, pp. 5248–5257

External links

  • National Geographic on Japanese records verifying an American earthquake
  • Cascadia tectonic history with map
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.