World Library  
Flag as Inappropriate
Email this Article

LARES (satellite)

Article Id: WHEBN0027086735
Reproduction Date:

Title: LARES (satellite)  
Author: World Heritage Encyclopedia
Language: English
Subject: 2012 in spaceflight, Goliat, Frame-dragging, LARES, Index of physics articles (L)
Collection: Acronyms, Artificial Satellites Orbiting Earth, Passive Satellites, Spacecraft Launched in 2012
Publisher: World Heritage Encyclopedia

LARES (satellite)

The aspect of LARES satellite
Mission type Laser ranging satellite
Test of GR[1][2]
Operator ASI
COSPAR ID 2012-006A
SATCAT № 38077
Spacecraft properties
Launch mass 386.8 kilograms (853 lb)
Dimensions 364 millimetres (14.3 in)
Start of mission
Launch date 13 February 2012, 22:45:00 (2012-02-13T22:45Z) UTC
Rocket Vega VV01
Launch site Kourou ELA-1
Orbital parameters
Reference system Geocentric
Regime Low Earth
Eccentricity 0.0008[3]
Perigee 1,437 kilometres (893 mi)[3]
Apogee 1,451 kilometres (902 mi)[3]
Inclination 69.49 degrees[3]
Period 114.75 minutes[3]
Epoch 29 July 2013[3]

LARES (acronym for Laser Relativity Satellite) (COSPAR ID 2012-006A) is an Italian Space Agency[4] scientific satellite launched from the ESA Guiana Space Centre of Kourou, French Guiana, by the maiden flight of the European launch vehicle Vega on 13 February 2012.[5][6] [7][8]

The LARES satellite is the densest known object orbiting in the Solar System.[1]


  • Mission 1
  • Scientific goals 2
  • See also 3
  • References 4
  • External links 5


The satellite, completely passive, is made of tungsten alloy and houses 92 cube corner retroreflectors that are used to track the satellite via laser from stations on Earth. LARES's body has a diameter of about 36.4 centimetres (14 in) and weighs about 400 kilograms (882 lb).[9] LARES was inserted in an orbit with 1,450 kilometres (901 mi) of perigee, an inclination of 69.5 degrees and reduced eccentricity. The satellite is tracked by the International Laser Ranging Service stations.[10][11]

Scientific goals

The main scientific target of the LARES mission is the measurement of the Lense–Thirring effect, also known as frame-dragging, with an accuracy of about 1%, according to its proponent, Ignazio Ciufolini (Principal Investigator of the mission), and the LARES Scientific Team.[12][12][13][14][15][16][17][18][19] The reliability of such an estimate is currently debated.[20][21][22][23][24][25][26][27][28]

The LARES satellite may also be used for measurements in the fields of geodynamics and satellite geodesy.

See also


  1. ^ a b "The LAser RElativity Satellite". The LARES Team. Retrieved 2013-02-28. 
  2. ^ "LARES". International Laser Ranging Service. Retrieved 2013-02-28. 
  3. ^ a b c d e f Peat, Chris (29 July 2013). "LARES - Orbit". Heavens-Above. Retrieved July 29, 2013. 
  4. ^ "LARES: Satellite per misure relativistiche" (in Italiano).  
  5. ^ "Vega Launch Vehicle".  
  6. ^ "Vega overview". 
  7. ^ "Prepping satellite to test Albert Einstein". 
  8. ^ "Overview of ESA activities in 2012 of interest to media.". 
  9. ^ Peroni, I.; et al. (2007). "Proceedings of the 58th International Astronautical Congress". IAC-07-B4.2.07. 
  10. ^ "International Laser Ranging Service". 
  11. ^ "LARES page on the ILRS Site". 
  12. ^ a b Ciufolini, I.; Paolozzi A., Pavlis E. C., Ries J. C., Koenig R., Matzner R. A., Sindoni G. and Neumayer H. (2009). "Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models".  
  13. ^ Ciufolini, I.; E. Pavlis; A. Paolozzi; J. Ries; R. Koenig; R. Matzner; G. Sindoni; H. Neumayer (2012). "Phenomenology of the Lense-Thirring effect in the solar system: Measurement of frame-dragging with laser ranged satellites". New Astronomy 17 (3): 341–346.  
  14. ^ Ciufolini, I.; Paolozzi A., Pavlis E. C., Ries J. C., Koenig R., Matzner R. A., Sindoni G. and Neumayer H. (2010). "Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models".  
  15. ^ Paolozzi, A.; Ciufolini I.; Vendittozzi C. (2011). "Engineering and scientific aspects of LARES satellite". Acta Astronautica 69 (3–4): 127–134.  
  16. ^ Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J.; Koenig R.; Sindoni G.; Neumeyer H. (2011). "Testing Gravitational Physics with Satellite Laser Ranging". European Physical Journal Plus 126 (8): 72.  
  17. ^ Ciufolini, I.; Pavlis E. C.; Paolozzi A.; Ries J.; Koenig R.; Matzner R.; Sindoni G.; Neumayer K.H. (2011-08-03). "Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites". New Astronomy 17 (3): 341–346.  
  18. ^ Ciufolini, I.; A. Paolozzi; C. Paris (2012). "Overview of the LARES mission: orbit, error analysis and technological aspects.". Journal of Physics. Conference Series 354: 1–9.  
  19. ^ Ciufolini, I.; V. G. Gurzadyan; R. Penrose; A. Paolozzi (2012). "Geodesic motion in general relativity: LARES in Earth's gravity.". Low Dimensional Physics and Gauge Principles: 1–4.  
  20. ^ Iorio, L. (2009). "Towards a 1% measurement of the Lense-Thirring effect with LARES?".  
  21. ^ Iorio, L. (2009). "Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?".  
  22. ^ Iorio, L. (2009). "An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging".  
  23. ^ Lorenzo Iorio (2009). "Recent Attempts to Measure the General Relativistic Lense-Thirring Effect with Natural and Artificial Bodies in the Solar System". PoS ISFTG 017.  
  24. ^ Iorio, L. (2010). "On the impact of the atmospheric drag on the LARES mission".  
  25. ^ Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. (2011). "Phenomenology of the Lense-Thirring effect in the solar system".  
  26. ^ Renzetti, G. (2012). "Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment?".  
  27. ^ Renzetti, G. (October 2013). "First results from LARES: An analysis".  
  28. ^ Ciufolini, I.; A. Paolozzi; E. C. Pavlis; J. C. Ries; R. Koenig; R. A. Matzner; G. Sindoni; H. Neumayer (2009). "Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models". Space Science Reviews 148 (1-4): 71–104.  

External links

  • LARES Mission: official Web Site of LARES Mission.
  • LARES - Testing of General Relativity on ASI's page
  • LARES - Pronto al via! article with images of LARES on ASI's site (in Italian)
  • LARES Satellite Information LARES page on the ILRS Web Site.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.