World Library  
Flag as Inappropriate
Email this Article

Mantle convection

Article Id: WHEBN0007604906
Reproduction Date:

Title: Mantle convection  
Author: World Heritage Encyclopedia
Language: English
Subject: Earth's internal heat budget, Geodynamics, Geophysics, Outline of geophysics, Plate tectonics
Collection: Convection, Geodynamics, Plate Tectonics
Publisher: World Heritage Encyclopedia

Mantle convection

Mantle convection is the slow creeping motion of Earth's solid silicate mantle caused by convection currents carrying heat from the interior of the Earth to the surface.[3] The Earth's surface lithosphere, which rides atop the asthenosphere (the two components of the upper mantle), is divided into a number of plates that are continuously being created and consumed at their opposite plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. This hot added material cools down by conduction and convection of heat. At the consumption edges of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in the process of subduction usually at an ocean trench.[4]

This subducted material sinks to a depth of 660 kilometres (410 mi) in the Earth's interior where it is impeded from sinking further, possibly due to a phase change from spinel to silicate perovskite and magnesiowustite, an endothermic reaction.[5]

The subducted oceanic crust triggers volcanism, although the basic mechanisms are varied. Volcanism may occur due to processes that add buoyancy to partially melted mantle causing an upward flow due to a decrease in density of the partial melt.

Secondary forms of convection that may result in surface volcanism are postulated to occur as a consequence of intraplate extension[6] and mantle plumes.[1]

It is because the mantle can convect that the tectonic plates are able to move around the Earth's surface.[7]

Mantle convection seems to have been much more active during the Hadean period, resulting in gravitational sorting of heavier molten iron, and nickel elements and sulphides in the core, and lighter silicate minerals in the mantle.


  • Types of convection 1
  • Speed of convection 2
  • See also 3
  • References 4

Types of convection

There is a current debate within the geophysics community as to whether convection is likely to be 'layered' or 'whole'.[8] This debate is linked to the controversy regarding whether intraplate volcanism is caused by shallow, upper-mantle processes or by plumes from the lower mantle.[6] Geochemists have argued that the lavas erupted in intraplate areas are different in composition from shallow-derived mid ocean ridge basalts (SDMORB). This has been interpreted as their originating from a different region, suggested to be the lower mantle. Others, however, have pointed out that the differences indicate the inclusion of a small component of near-surface material from the lithosphere. Seismologists are also divided, with some arguing that there is no evidence for whole-mantle convection,[9] and others arguing that there is.[10]

Speed of convection

Typical mantle convection speed is 20 mm/yr near the crust but can vary quite a bit.[11][12][13] The small scale convection in the upper mantle is much faster than the convection near the core. (See whole-mantle discussion above.) A single shallow convection cycle takes on the order of 50 million years, though deeper convection can be closer to 200 million years.[14]

See also


  1. ^ a b Kent C. Condie (1997). Plate tectonics and crustal evolution (4th ed.). Butterworth-Heinemann. p. 5.  
  2. ^ Ctirad Matyska & David A Yuen (2007). "Figure 17 in Lower-mantle material properties and convection models of multiscale plumes". Plates, plumes, and planetary processes. Geological Society of America. p. 159.  
  3. ^ Kobes, Randy and Kunstatter, Gabor."Mantle Convection". Physics Department, University of Winnipeg. Retrieved 3 January 2010.
  4. ^ Gerald Schubert, Donald Lawson Turcotte, Peter Olson (2001). "Chapter 2: Plate tectonics". Mantle convection in the earth and planets. Cambridge University Press. p. 16 ff.  
  5. ^ Gerald Schubert, Donald Lawson Turcotte, Peter Olson. "§2.5.3: Fate of descending slabs". Cited work. p. 35 ff.  
  6. ^ a b  
  7. ^ Moresi, Louis; Solomatov, Viatcheslav (1998). "Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus". Geophysical Journal International 133: 669–682.  
  8. ^ See for example, Donald Lawson Turcotte, Gerald Schubert (2002). Geodynamics (2nd ed.). Cambridge University Press.  
  9. ^ Ritsema, J; Van Heijst, HJ; Woodhouse, JH (1999). "Complex shear wave velocity structure imaged beneath Africa and Iceland". Science 286 (5446): 1925–1928.  
  10. ^ Montelli, R; Nolet, G; Dahlen, FA; Masters, G; Engdahl ER; Hung SH (2004). "Finite-frequency tomography reveals a variety of plumes in the mantle". Science 303 (5656): 338–43.  
  11. ^ Small-scale convection in the upper mantle beneaththe Chinese Tian Shan Mountains,
  12. ^ Polar Wandering and Mantle Convection,
  13. ^ Picture showing convection with velocities indicated.
  14. ^ Thermal Convection with a Freely Moving Top Boundary, See section IV Discussion and Conclusions
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.