#jsDisabledContent { display:none; } My Account |  Register |  Help
 Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Muffin-tin approximation

Article Id: WHEBN0019127190
Reproduction Date:

 Title: Muffin-tin approximation Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Muffin-tin approximation

The muffin-tin approximation is a shape approximation of the potential field in an atomistic environment. It is most commonly employed in quantum mechanical simulations of electronic band structure in solids. The approximation was proposed by John C. Slater. Augmented plane wave method is a method which uses muffin tin approximation. It is a method to approximate the energy states of an electron in a crystal lattice. The basis approximation lies in the potential in which the potential is assumed to be spherically symmetric in the muffin tin region and constant in the interstitial region. Wave functions (the augmented plane waves) are constructed by matching solutions of the Schrödinger equation within each sphere with plane-wave solutions in the interstitial region, and linear combinations of these wave functions are then determined by the variational method[1][2] Many modern electronic structure methods employ the approximation.[3][4] Among them are the augmented plane wave (APW) method, the linear muffin-tin orbital method (LMTO) and various Green's function methods.[5] One application is found in the variational theory developed by Korringa (1947) and by Kohn and Rostocker (1954) referred to as the KKR method.[6][7][8] This method has been adapted to treat random materials as well, where it is called the KKR coherent potential approximation.[9]

In its simplest form, non-overlapping spheres are centered on the atomic positions. Within these regions, the screened potential experienced by an electron is approximated to be spherically symmetric about the given nucleus. In the remaining interstitial region, the potential is approximated as a constant. Continuity of the potential between the atom-centered spheres and interstitial region is enforced.

In the interstitial region of constant potential, the single electron wave functions can be expanded in terms of plane waves. In the atom-centered regions, the wave functions can be expanded in terms of spherical harmonics and the eigenfunctions of a radial Schrödinger equation.[2][10] Such use of functions other than plane waves as basis functions is termed the augmented plane-wave approach (of which there are many variations). It allows for an efficient representation of single-particle wave functions in the vicinity of the atomic cores where they can vary rapidly (and where plane waves would be a poor choice on convergence grounds in the absence of a pseudopotential).

## References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.