World Library  
Flag as Inappropriate
Email this Article

Northwest Biotherapeutics

 

Northwest Biotherapeutics

NorthWest Biotherapeutics, Inc.
Public
Traded as NASDAQ: NWBO
Industry Pharmaceuticals
Headquarters Bothell, Washington
Products
Slogan Innovations for cancer
Website .com.nwbiowww

Northwest Biotherapeutics is a development-stage[1]:8 American pharmaceutical company that focuses on developing immunotherapies against different types of cancer.

Contents

  • Business model 1
  • Mission 2
  • Technology 3
    • Dendritic cells 3.1
    • DCVax-L 3.2
    • Production efficiency 3.3
  • Products 4
  • Footnotes and references 5
  • External links 6

Business model

Northwest relies upon the

  • Northwest Biotherapeutics homepage

External links

  1. ^ a b c d e
  2. ^
  3. ^ http://www.nwbio.com/about_overview.php
  4. ^ (Tch-1) http://www.biomedreports.com/2010071547553/bio-showdown-northwest-biotherapeutics-vs-dendreon.html

Footnotes and references

DCVax-Prostate finished Phase 2 trials and has been approved for Phase 3 trials in the US.

DCVax-Direct is a therapy to treat inoperable solid tumors in Phase 1 trials in the US.

DCVax-L is now in Phase 3 trials in USA & Europe.

Products

The high cost of production for first generation dendritic cell therapies is often used as evidence that DCVax-Prostate and the other DCVax therapies will not be economically viable. These arguments consistently ignore the fact that Northwest Biotherapeutics has developed and regularly utilizes methods to freeze dendritic cells for transport and storage. This gives NWBO an enormous production cost advantage over these older therapies and over current would-be competitors, in part because it allows centralized processing of the patient samples at one enormous facility. Further, as mentioned, Northwest has developed and patented automated mfg processes that further reduce cost. The manufacturing processes are similar for all three of Northwest’s therapies. For each of the three, the production process is identical regardless of the patient, and even regardless of the solid tumor cancer type. Combined with centralized automatic mfg, this greatly simplifies large scale production, potentially allowing cost efficiency to reach levels unexpected for a product that is not a pill.[4]

Production efficiency

Another difference in the target antigens is NWBO’s target is bound to the membrane of the tumor cell. “If the DCVax® hits our target,” explains Linda Powers, “it hits the cell for sure. Dendreon’s target is secreted by the cell, so while the target is close by, it is not necessarily bound to the cell in every instance. Antibodies can come along and glom onto to the target and not hit the cell itself, which means accuracy is an issue. (Tch-1)

Dendreon uses PAP, while NWBO uses PSMA. Terminology aside, what matters here according to representatives at NWBO is Dendreon’s target antigen is not expressed on all prostrate cancers. They have to screen their patients to see the expression of their target. NWBO’s target antigen is expressed on all prostrate cancers. Additionally, with Dendreon’s target, the level of expression goes down as the cancer progresses. The level of expression on NWBO’s target goes up as the cancer progresses. As we learned from NWBO’s Chairman Linda Powers, if your target is getting harder and harder for the vaccine to find and hit as the cancer progresses, that’s not the characteristic you want in your target antigen. (Tch-1)

Northwest completed phase II clinicals for DCVax-Prostate some time ago, and received permission from the FDA to move forward with a phase III. The phase III trial is expected to be quite large, and Northwest has been seeking partnering to take on that endeavor. The DCVax-Prostate process is similar to DCVax-L, but rather than using the patient's tumor as the protein source, Northwest utilizes a synthetic protein that was determined to be a very common mutated protein located on prostate cancer cells. This method is very different, and is expected to be far more effective than the current approved immunotherapy for prostate.

DCVax-Prostate:

DCVax-L + DCVax-Direct combined may prove to well address virtually all forms of solid tumor cancers, operable and inoperable. One exception might be prostate cancer.


At least two adjuncts are added to the dendritic cells. One adjunct is to excite one aspect of the body’s immune response, while another excites a more tumor specific response. This mixture is then injected into the patient's tumor. There, the dendritic cells scavenge tumor proteins, and then find their way to the local lymph node for presentation of the tumor proteins to T-Cells and B-Cells. The activated T-Cells and B-Cells then travel to the tumor and kill tumor cells. The ruptured tumor cells release mutant proteins that are picked up by dendritic cells and other immune cells, and carried to the lymph nodes to excite still more B and T-Cells. This cycle repeats, spiraling upward and then leveling off at a high but safe level. Or, at least that is what is expected to be seen in the ongoing phase 1 trial, which finished enrollment this last July, 2014.

In the DCVax-Direct procedure, the dendritic cells are developed as in the DCVax-L process, with some improvements and or modifications to that process. A relatively new, patented, automated manufacturing process is used, and the dendritic cells are grown to a precise age that was found to be highly optimum by Northwest. This too is patented.

DCVax-Direct is the latest addition to the DCVax line, and is currently in phase 1 trials in the US. With DCVax-Direct, there is no need to surgically remove the tumor. In fact, the tumor is fuel for the immune response once that response is fully excited. DCVax-Direct is currently being tested on patients with inoperable tumors.

DCVax-Direct:

These dendritic cells are grown in the lab starting from stem cells extracted from the patient's blood. Only a sugar cube sized sample of the tumor is needed for subsequent presentation to the dendritic cells. The tumor sample is first broken down into constituent proteins using a caustic process known as lysing. (Thus the L in the name DCVax-L.) After the resulting "tumor lysate" is presented to the dendritic cells, they are ready for injection under the skin near the selected lymph node(s). Note that there are roughly 500 different lymph nodes in the body. Most are peripheral, some are internal.

DCVax-L is a solid-tumor cancer therapy currently in phase III clinical testing in the US for newly diagnosed GBM, a common and aggressive form of brain cancer. It is also under clinical trial in the UK, and Germany. In Germany, it is being used on all "gliomas" not just newly diagnosed GBM. In this variation of the DCVax line, the tumor is removed through surgery, and some of the tumor presented to the aforementioned dendritic cells for the scavenging of tumor proteins. These dendritic cells, laden with tumor proteins, are then injected under the skin near lymph nodes. The dendritic cells then travel to the local lymph node where the dendritic cells present the proteins to the T and B Cells as previously described.

DCVax-L

Northwest Biotherapeutics currently has three different cancer treatments in various levels of clinical trial. One thing in common to all three products is the use of dendritic cells, one of many types of white blood cells. The basic principle behind the DCVax line of products is that if one injects or creates a large enough number of dendritic cells carrying mutant proteins matching a cancer, these dendritic cells will excite enough T-cells and B-cells to overwhelm the cancer's many defenses.

Dendritic cells

The DCVax technology upon which NWBO's therapies rely involves injecting cancer patients with dendritic cells, which contain high levels of the same antigens found in tumor cells. The immune system, alerted by these antigens, attacks the cancer as well as the injected cells.

Technology

NWBO's stated goals stress product quality and purity, innovation, and efficient production.[3]

Mission

[2],:15[1] As of 2014, Northwest is undergoing an increase in activities as a result of expanding clinical trials, which has led to increasing reliance on Cognate for services, and subsequent renegotiation of the agreement with Cognate.:16[1] Further, Cognate has provided Northwest with at least one short-term loan, provided and paid in mid-2013.:16[1] Due to cash flow issues common to development-stage companies, Northwest compensates Cognate through a combination of cash and stock payments.:15[1]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.