World Library  
Flag as Inappropriate
Email this Article

Nucleoside triphosphate

Article Id: WHEBN0000848862
Reproduction Date:

Title: Nucleoside triphosphate  
Author: World Heritage Encyclopedia
Language: English
Subject: Nucleotide, Guanosine triphosphate, Adenosine triphosphate, Expanded genetic code, Base pair
Collection: Nucleic Acids, Nucleotides
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Nucleoside triphosphate

A nucleoside triphosphate is a molecule containing a nucleoside bound to three phosphates (also known as a nucleotide). Nucleotide derivatives are necessary for life, as they are the building blocks of nucleic acids and have thousands of other roles in cell metabolism and regulation. NTPs generally provide energy and phosphate group for phosphorylations.

Natural nucleotide triphosphates include adenosine triphosphate (ATP), guanosine triphosphate (GTP), cytidine triphosphate (CTP), 5-methyluridine triphosphate (m5UTP), and uridine triphosphate (UTP). ATP is a major source of cellular energy. GTP is a very frequent cofactor of enzymes and proteins.

The terms ATP, GTP, CTP, and UTP refer to those nucleotide triphosphates that contain ribose. The nucleotide triphosphates containing deoxyribose are called dNTPs, and take the prefix deoxy- in their names and small d- in their abbreviations: deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), deoxythymidine triphosphate (dTTP) and deoxyuridine triphosphate. The dNTPs are the building blocks for DNA (they lose two of the phosphate groups in the process of incorporation).

Apart from (d)ATP, (d)GTP, (d)CTP, (d)TTP and (d)UTP, there are other less abundant NTPs, such as intermediates of nucleotide metabolism, but also "rare" natural nucleotides or even artificial nucleotides.[1] An example of rare NTPs are the tautomeric forms of some NTPs. They can cause mismatched base pairing during DNA replication. For example, a tautomeric form of cytosine is capable of forming 3 hydrogen bonds with adenine, and it will spontaneously tautomerize to its original cytosine form, causing a mismatch. By a similar token, the deamination of cytosine leads to uracil, whereas a deamination of a commonly encountered (in eukaryotes) 5-methylcytosine will lead to thymine. However, the 3' to 5' exonuclease activity of DNA polymerase III ensures that mismatched bases are excised during replication.

Generally nucleotides are nucleosides (a ribose/deoxyribose sugar covalently bonded to a nitrogenous base, such as adenine) that have 5' phosphate(s). However, for the sake of technical terminology, nucleotides are given classifications as nucleosides with a suffix describing the number of phosphates present in a specific unit. For example, if a nucleotide has one phosphate, it is a nucleoside monophosphate (NMP). If the nucleotide has two phosphates, then it is called a nucleoside diphosphate (NDP), and for three, it is a nucleoside triphosphate (NTP). The nucleotides that contain a ribose sugar are the monomers of RNA and those that contain a deoxyribose sugar compose DNA.

NTPs, NDPs and NMPs are ubiquitous in the cell cytoplasm, nucleus and organelles. Given their multifarious functions, their levels are under fairly tight metabolic control. Shifts in the ratio of available nucleotides can cause shifts in their incorporation, which, if not corrected, can lead to mutations. Most of the discussion on mutual ratios of nucleotides should belong under entry nucleotide, but concentrating strictly on the abundance of the triphosphorylated versions, we find that ATP spending is replenished by oxidative phosphorylation, while phosphorylation status of other nucleotides is regulated by NDP kinases (EC 2.7.4.6) and NMP kinases (EC 2.7.4.4) that use ATP pool as their cross-phosphorylation source.

References

  1. ^ http://www.newscientist.com/article/dn13252-artificial-letters-added-to-lifes-alphabet.html
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.