World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000106235
Reproduction Date:

Title: Pipette  
Author: World Heritage Encyclopedia
Language: English
Subject: Laboratory glassware, In-gel digestion, Burette, Titration, Air displacement pipette
Collection: Laboratory Equipment, Laboratory Glassware, Microbiology Equipment, Volumetric Instruments
Publisher: World Heritage Encyclopedia


A selection of pipettes

A pipette, pipet, pipettor or chemical dropper is a laboratory tool commonly used in chemistry, biology and medicine to transport a measured volume of liquid, often as a media dispenser. Pipettes come in several designs for various purposes with differing levels of accuracy and precision, from single piece glass pipettes to more complex adjustable or electronic pipettes. Many pipette types work by creating a partial vacuum above the liquid-holding chamber and selectively releasing this vacuum to draw up and dispense liquid. Measurement accuracy varies greatly depending on the style.


  • History 1
  • Nomenclature 2
  • Common pipettes 3
    • Air displacement micropipettes 3.1
    • Positive displacement pipette 3.2
    • Volumetric pipettes 3.3
    • Graduated pipettes 3.4
    • Pasteur pipette 3.5
    • Transfer pipettes 3.6
  • Specialized pipettes 4
    • Pipetting syringe 4.1
    • Van Slyke Pipette 4.2
    • Ostwald-Folin Pipette 4.3
    • Glass micropipette 4.4
    • Microfluidic pipette 4.5
    • Extremely low volume pipettes 4.6
    • Robots 4.7
  • Calibration 5
  • References 6
  • External links 7


The first micropipette was patented in 1957 by Dr Heinrich Schnitger (Marburg/ Germany). The founder of the company Eppendorf, Dr. Heinrich Netheler, inherited the rights and started the commercial production of micropipettes within the sixties. The adjustable micropipette is a Wisconsin invention developed through interactions among several people, primarily inventor Warren Gilson and Henry Lardy, a professor of biochemistry at the University of Wisconsin-Madison.[1][2]


Although specific descriptive names exist for each type of pipette, in practice any type of pipette will merely be referred to as a "pipette" and the desired device will be obvious from context. Sometimes, pipettes that dispense between 1 and 1000 μl are distinguished as micropipettes, while macropipettes dispense greater volumes.

Common pipettes

Air displacement micropipettes

Single-Channel Pipettes designed to handle 1-5ml and 100-1000µl with locking system
A variety of pipette tips
Air displacement micropipettes are a type of adjustable micropipette that measured volume between about 0.1 µl to 1000 µl (1 ml). These pipettes require disposable tips that come in contact with the fluid. The four standard sizes of micropipettes correspond to four different disposable tip colors:
Pipette type Volumes (μL) Tip color
P10 0.5 – 10 white
P20 2 – 20 yellow
P200 20 – 200 yellow
P1000 200 – 1000 blue

These pipettes operate by piston-driven air displacement. A vacuum is generated by the vertical travel of a metal or ceramic piston within an airtight sleeve. As the piston moves upward, driven by the depression of the plunger, a vacuum is created in the space left vacant by the piston. The liquid around the tip moves into this vacuum (along with the air in the tip) and can then be transported and released as necessary. These pipettes are capable of being very precise and accurate. However, since they rely on air displacement, they are subject to inaccuracies caused by the changing environment, particularly temperature and user technique. For these reasons this equipment must be carefully maintained and calibrated, and users must be trained to exercise correct and consistent technique.

The micropipette was invented and patented in 1960 by Dr.Heinrich Schnitger Marburg, Germany. Afterwards, the co-founder of the biotechnology company Eppendorf, Dr. Heinrich Netheler, inherited the rights and initiated the global and general use of micropipettes in labs. In 1972, the adjustable micropipette was invented at the University of Wisconsin-Madison by several people, primarily Warren Gilson and Henry Lardy.[3]

Micropipettes brands include Gilson, ErgoOne, Eppendorf, Hamilton, Rainin, Drummond, BrandTech, Oxford, Hirschmann, Biohit, Labnet, Nichiryo, Socorex, Corning, VistaLab, Thermo, Jencons, Vertex, Handypett, and Pricisexx.

Several different type of air displacement pipettes exist:

  • adjustable or fixed
  • volume handled
  • Single-channel, multi-channel or repeater
  • conical tips or cylindrical tips
  • standard or locking
  • manual or electronic
  • manufacturer

Irrespective of brand or expense of pipette, every micro pipette manufacturer recommends checking the calibration at least every six months, if used regularly. Companies in the drug or food industries are required to calibrate their pipettes quarterly (every three months). Schools which are conducting chemistry classes can have this process annually. Those studying forensics and research where a great deal of testing is commonplace will perform monthly calibrations.

Positive displacement pipette

These are similar to air displacement pipettes, but are less commonly used and are used to avoid contamination and for volatile or viscous substances at small volumes, such as DNA. The major difference is that the disposable tip is a microsyringe (plastic), composed of a plunger which directly displaces the liquid.

Volumetric pipettes

Several sizes of volumetric pipette.

Volumetric pipettes or bulb pipette allow the user to measure a volume of solution extremely accurately (accuracy of four significant figures). These pipettes have a large bulb with a long narrow portion above with a single graduation mark as it is calibrated for a single volume (like a volumetric flask). Typical volumes are 10, 25, and 50 mL. Volumetric pipettes are commonly used to make laboratory solutions from a base stock as well as prepare solutions for titration.

Graduated pipettes

Graduated pipettes are a type of macropipette consisting of a long tube with a series of graduations, as on a graduated cylinder or burette, to indicate different calibrated volumes. They also require a source of vacuum; in the early days of chemistry and biology, the mouth was used. Graduated pipettes commonly come in 5, 10, 25 and 50 mL volumes.

To avoid accidental ingestion of potentially harmful substances, a variety of propipetters have been developed, both entirely manual and electrically assisted:

Originally pipettes were made of soda-lime glass, but currently many are made of borosilicate glass; disposable graduated pipettes are often made of polystyrene. Graduated pipettes are often graduated in one of two ways:

  • Mohr, backward or drain-out pipettes have a 0 mL mark just above the end of the pipette. A volume is pulled into the pipette, sometimes to the maximum volume, then the needed volume is aliquoted out.
  • Serological, forward or blow-out pipettes have no 0ml mark as that corresponds to an empty pipette. The volume needed is pulled into the pipette and then dispensed.
Top: A Mohr, backward or drain-out pipette.
Bottom: Serological, forward or blow-out pipette.

Historically, the accuracy of a graduated pipette was not as good as that of a volumetric pipette (accuracy of 3 significant fig); however, with improved manufacturing methods, the accuracies listed by the manufacturer can equal volumetric pipettes.[4] Graduated pipettes have +/- tolerances that range from 0.6% to 0.4% of the nominal volume when measured at 20 °C (68 °F). Graduated pipettes are manufactured according to ISO specifications for accuracy and the arrangement of the graduations. A-grade pipettes are more accurate than B-grade pipettes.

Pasteur pipette

Pasteur pipettes

Pasteur pipettes are plastic or glass pipettes used to transfer small amounts of liquids, but are not graduated or calibrated for any particular volume. Pasteur pipettes are also called teat pipettes, droppers, eye droppers and chemical droppers.

Transfer pipettes

A transfer pipette

Transfer pipettes, also known as Beral pipettes, are similar to Pasteur pipettes but are made from a single piece of plastic and their bulb can serve as the liquid-holding chamber.

Specialized pipettes

Pipetting syringe

Pipetting syringes are hand-held devices that combine the functions of volumetric (bulb) pipettes, graduated pipettes, and ISO volumetric A grade standards. A glass or plastic pipette tube is used with a thumb-operated piston and PTFE seal which slides within the pipette in a positive displacement operation. Such a device can be used on a wide variety of fluids (aqueous, viscous, and volatile fluids; hydrocarbons; essential oils; and mixtures) in volumes between 0.5mL and 25mL. This arrangement provides improvements in precision, handling safety, reliability, economy, and versatility. No disposable tips or pipetting aids are needed with the pipetting syringe.

Van Slyke Pipette

A graduated pipette commonly used in medical technology with serologic pipettes for volumetric analysis. Invented by Donald Dexter Van Slyke.[5]

Ostwald-Folin Pipette

A special pipette used in measuring viscous fluid such as whole blood. Common in medical technology laboratory setups together with other pipettes. Invented by Friedrich Wilhelm Ostwald, a Baltic German Chemist and later refined by Otto Folin, an American Chemist.[6]

Glass micropipette

Borosilicate glass micropipette pulled with a Flaming/Brown micropipette puller P-97

These are used to physically interact with microscopic samples, such as in the procedures of microinjection and patch clamping. Most micropipettes are made of borosilicate, aluminosilicate or quartz with many types and sizes of glass tubing being available. Each of these compositions has unique properties which will determine suitable applications.

Glass micropipettes are fabricated in a micropipette puller and are typically used in a micromanipulator.

Microfluidic pipette

A Microfluidic pipette, housed in a manifold holder. The colored solutions highlight the solutions loaded into the wells of the PDMS pipette. Pneumatic actuation is used to keep all tubing free of contamination.

A recent introduction into the micropipette field integrates the versatility of microfluidics into a freely positionable pipette platform. At the tip of the device a localized flow zone is created, allowing for constant control of the nanoliter environment, directly in front of the pipette. The pipettes are made from polydimethylsiloxane (PDMS) which is formed using reactive injection molding. Interfacing of these pipettes using pneumatics enables multiple solutions to be loaded and switched on demand, with solution exchanged times of 100ms.
Invented by Alar Ainla, currently situated in the Biophysical Technology Lab[7] at Chalmers University of Technology in Sweden.[8] The technology became commercial in 2013, under the name Multifunctional pipette, with the company Fluicell (former Avalance Biotech AB).

Extremely low volume pipettes

A zeptoliter pipette has been developed at Brookhaven National Laboratory. The pipette is made of a carbon shell, within which is an alloy of gold-germanium. The pipette was used to learn about how crystallization takes place.[9]


An example of pipettes manipulated by an anthropomorphic robot

Pipette robots are capable of manipulating the pipettes as humans would do.[10]


Pipette recalibration[11] is an important consideration in laboratories using these devices. It is the act of examining or adjusting the quality of being near to the true value of a measuring device by comparison with a standard. Pipette calibration is essential to ensure that the instrument is working according to expectations and as per the defined regimes or work protocols. Pipette calibration is considered to be a complex affair because it includes many elements of calibration procedure and several calibration protocol options as well as makes and models of pipettes to consider.


  1. ^
  2. ^
  3. ^ Zinnen, Tom (June 2004), The Micropipette Story, retrieved November 12, 2011 
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^ Aimee Cunningham (2007-04-18). "A New Low: Lilliputian pipette releases tiniest drops" 171,. Science News. pp. 244–245. 
  10. ^ hands-free use of pipettes, August 2012, retrieved August 29, 2012 
  11. ^ What is Pipette Calibration?

External links

  • Helpful Hints on the Use of a Volumetric Pipet by Oliver Seely
  • The History of the Pipette (YouTube video)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.