World Library  
Flag as Inappropriate
Email this Article

Plant reproduction

Article Id: WHEBN0006614349
Reproduction Date:

Title: Plant reproduction  
Author: World Heritage Encyclopedia
Language: English
Subject: Botany, Branches of botany, Microgametogenesis, Plantlet, Sexuality (disambiguation)
Collection: Developmental Biology, Fertility, Plant Reproduction, Plant Sexuality
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Plant reproduction

Plant reproduction is the production of new individuals or offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from the parent or parents. Asexual reproduction produces new individuals without the fusion of gametes, genetically identical to the parent plants and each other, except when mutations occur. In seed plants, the offspring can be packaged in a protective seed, which is used as an agent of dispersal.

Bryophyllum, a plant that reproduces asexually via new shoots from the leaves

Contents

  • History 1
  • Asexual reproduction 2
    • Structures 2.1
    • Usage 2.2
  • Sexual reproduction 3
  • History of sexual reproduction 4
    • Flowering plants 4.1
      • Pollination 4.1.1
    • Ferns 4.2
    • Bryophytes 4.3
  • Sexual morphology 5
  • See also 6
  • References 7
  • External links 8

History

Many botanists were involved in the description of the main events in plant reproduction, like Wilhelm Hofmeister and Eduard Strasburger.

Asexual reproduction

Plants have two main types of asexual reproduction in which new plants are produced that are genetically identical parthenogenesis.

Natural vegetative reproduction is mostly a Polypody, Iris, Couch Grass and Nettles.

Prostrate aerial stems, called runners or strawberry, numerous grasses, and some ferns.

Adventitious buds form on roots near the ground surface, on damaged stems (as on the stumps of cut trees), or on old roots. These develop into above-ground stems and leaves. A form of budding called suckering is the reproduction or regeneration of a plant by shoots that arise from an existing root system. Species that characteristically produce suckers include Elm (Ulmus), Dandelion (Taraxacum), and many members of the Rose family such as Rosa and Rubus.

Plants like onion (Allium cepa), hyacinth (Hyacinth), narcissus (Narcissus) and tulips (Tulipa) reproduce by dividing their underground bulbs into more bulbs. Other plants like potatoes (Solanum tuberosum) and dahlia (Dahlia) reproduce by a similar method involving underground tubers. Gladioli and crocuses (Crocus) reproduce in a similar way with corms.

Usage

The most common form of plant reproduction utilized by people is seeds, but a number of asexual methods are utilized which are usually enhancements of natural processes, including: cutting, grafting, budding, layering, division, sectioning of rhizomes, roots, tubers, bulbs, stolons, tillers (suckers), etc., and artificial propagation by laboratory tissue cloning. Asexual methods are most often used to propagate cultivars with individual desirable characteristics that do not come true from seed.[3] Fruit tree propagation is frequently performed by budding or grafting desirable cultivars (clones), onto rootstocks that are also clones, propagated by stooling.

In horticulture, a "cutting" is a branch that has been cut off from a mother plant below an internode and then rooted, often with the help of a rooting liquid or powder containing hormones. When a full root has formed and leaves begin to sprout anew, the clone is a self-sufficient plant,[4] genetically identical to the mother plant. Examples include cuttings from the stems of blackberries (Rubus occidentalis), African violets (Saintpaulia), verbenas (Verbena) to produce new plants. A related use of cuttings is grafting, where a stem or bud is joined onto a different stem. Nurseries offer for sale trees with grafted stems that can produce four or more varieties of related fruits, including apples. The most common usage of grafting is the propagation of cultivars onto already rooted plants, sometimes the rootstock is used to dwarf the plants or protect them from root damaging pathogens.[5]

Since vegetatively propagated plants are clones, they are important tools in plant research. When a clone is grown in various conditions, differences in growth can be ascribed to environmental effects instead of genetic differences.[4]

Sexual reproduction

Sexual reproduction involves two fundamental processes: meiosis, which rearranges the genes and reduces the number of chromosomes, and fertilization, which restores the chromosome to a complete diploid number. In between these two processes, different types of plants and algae vary, but many of them, including all land plants, undergo alternation of generations, with two different multicellular structures (phases), a gametophyte and a sporophyte. The evolutionary origin and adaptive significance of sexual reproduction are discussed in the pages “Evolution of sexual reproduction” and “Origin and function of meiosis.”

The gametophyte is the multicellular structure (plant) that is haploid, containing a single set of chromosomes in each cell. The gametophyte produces male or female gametes (or both), by a process of cell division called mitosis. In vascular plants with separate gametophytes, female gametophytes are known as mega gametophytes (mega=large, they produce the large egg cells) and the male gametophytes are called micro gametophytes (micro=small, they produce the small sperm cells).

The fusion of male and female gametes (fertilization) produces a diploid zygote, which develops by mitotic cell divisions into a multicellular sporophyte.

The mature sporophyte produces spores by meiosis, sometimes referred to as "reduction division" because the chromosome pairs are separated once again to form single sets.

In mosses and liverworts the gametophyte is relatively large, and the sporophyte is a much smaller structure that is never separated from the gametophyte. In ferns, gymnosperms, and flowering plants (angiosperms), the gametophytes are relatively small and the sporophyte is much larger. In gymnosperms and flowering plants the mega gametophyte is contained within the ovule (that may develop into a seed) and the micro gametophyte is contained within a pollen grain.

History of sexual reproduction

Unlike animals, plants are immobile, and cannot seek out sexual partners for reproduction. In the evolution of early plants, abiotic means, including water and wind, transported carpels, and the female gametophyte is greatly reduced to a female embryo sac, with as few as eight cells. The male gametophyte consists of the pollen grains. The sperm of seed plants are non-motile, except for two older groups of plants, the Cycadophyta and the Ginkgophyta, which have flagellated sperm.

Flowering plants

gametes, the transfer of the male gametes to the female ovules in a process called pollination. After pollination occurs, fertilization happens and the ovules grow into seeds within a fruit. After the seeds are ready for dispersal, the fruit ripens and by various means the seeds are freed from the fruit and after varying amounts of time and under specific conditions the seeds germinate and grow into the next generation.

The anther produces male gametophytes which are pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sperm from the pollen grain migrate into the ovule to fertilize the egg cell and central cell within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus a binucleate female cell) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate.

Pollination

An orchid flower

In plants that use insects or other animals to move pollen from one flower to the next, plants have developed greatly modified flower parts to attract pollinators and to facilitate the movement of pollen from one flower to the insect and from the insect back to the next flower. Flowers of wind pollinated plants tend to lack petals and or sepals; typically large amounts of pollen are produced and pollination often occurs early in the growing season before leaves can interfere with the dispersal of the pollen. Many trees and all grasses and sedges are wind pollinated, as such they have no need for large fancy flowers.

Plants have a number of different means to attract pollinators including color, scent, heat, nectar glands, eatable pollen and flower shape. Along with modifications involving the above structures two other conditions play a very important role in the sexual reproduction of flowering plants, the first is timing of flowering and the other is the size or number of flowers produced. Often plant species have a few large, very showy flower while others produce many small flowers, often flowers are collected together into large inflorescences to maximize their visual effect, becoming more noticeable to passing pollinators. Flowers are attraction strategies and sexual expressions are functional strategies used to produce the next generation of plants, with pollinators and plants having co-evolved, often to some extraordinary degrees, very often rendering mutual benefit.

Flower heads showing disk and ray florets.

The largest family of flowering plants is the orchids (Orchidaceae), estimated by some specialists to include up to 35,000 species,[6] which often have highly specialized flowers that attract particular insects for pollination. The stamens are modified to produce pollen in clusters called pollinia, which become attached to insects that crawl into the flower. The flower shapes may force insects to pass by the pollen, which is "glued" to the insect. Some orchids are even more highly specialized, with flower shapes that mimic the shape of insects to attract them to 'mate' with the flowers, a few even have scents that mimic insect pheromones.

Another large group of flowering plants is the Asteraceae or sunflower family with close to 22,000 species,[7] which also have highly modified inflorescences that are flowers collected together in heads composed of a composite of individual flowers called florets. Heads with florets of one sex, when the flowers are pistillate or functionally staminate, or made up of all bisexual florets, are called homogamous and can include discoid and liguliflorous type heads. Some radiate heads may be homogamous too. Plants with heads that have florets of two or more sexual forms are called heterogamous and include radiate and disciform head forms, though some radiate heads may be heterogamous too.

Ferns

Ferns typically produce large diploid sporophytes with rhizomes, roots and leaves; and on fertile leaves called sporangium, spores are produced. The spores are released and germinate to produce short, thin gametophytes that are typically heart shaped, small and green in color. The gametophytes or thallus, produce both motile sperm in the antheridia and egg cells in separate archegonia. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produced on the top side of the thallus, and swim in the film of water to the antheridia where they fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the eggs are receptive of the sperm, making it more likely that the sperm will fertilize the eggs of different thallus. A zygote is formed after fertilization, which grows into a new sporophytic plant. The condition of having separate sporophyte and gametophyte plants is call alternation of generations. Other plants with similar reproductive means include the Psilotum, Lycopodium, Selaginella and Equisetum.

Bryophytes

The bryophytes, which include liverworts, hornworts and mosses, reproduce both sexually and vegetatively. The gametophyte is the most commonly known phase of the plant. All are small plants found growing in moist locations and like ferns, have motile sperm with flagella and need water to facilitate sexual reproduction. These plants start as a haploid spore that grows into the dominate form, which is a multicellular haploid body with leaf-like structures that photosynthesize. Haploid gametes are produced in antherida and archegonia by mitosis. The sperm released from the antheridia respond to chemicals released by ripe archegonia and swim to them in a film of water and fertilize the egg cells, thus producing zygotes that are diploid. The zygote divides by mitotic division and grows into a sporophyte that is diploid. The multicellular diploid sporophyte produces structures called spore capsules. The spore capsules produce spores by meiosis, and when ripe, the capsules burst open and the spores are released. Bryophytes show considerable variation in their breeding structures and the above is a basic outline. In some species each gametophyte is one sex while other species produce both antheridia and archegonia on the same gametophyte which is thus hermaphrodite.[8]

Sexual morphology

Many plants have evolved complex sexual reproductive systems, which is expressed in different combinations of their reproductive organs. Some species have separate male and female plants, and some have separate male and female flowers on the same plant, but the majority of plants have both male and female parts in the same flower. Some plants change their morphological expression depending on a number of factors like age, time of day, or because of environmental conditions. Plant sexual morphology also varies within different populations of some species.

See also

References

  1. ^ Fritz, Robert E.; Simms, Ellen Louise (1992). Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. Chicago: University of Chicago Press. p. 359.  
  2. ^ http://www.lifescientist.com.au/article/29781/why_apomixis_genetic_gold
  3. ^ Introduction To Plant Science. Delmar Thomson Learning. p. 296.  
  4. ^ a b Rooting cuttings of tropical trees. London: Commonwealth Science Council. 1993. p. 9.  
  5. ^ Reiley, H. Edward; Shry, Carroll L. (2004). Introductory horticulture. Albany, NY: Delmar/Thomson Learning. p. 54.  
  6. ^ Orchidaceae in Flora of North America @ efloras.org
  7. ^ Asteraceae in Flora of North America @ efloras.org
  8. ^ Lovett Doust, Jon, and Lesley Lovett Doust. 1988. Plant reproductive ecology: patterns and strategies. New York: Oxford University Press. P 290.

External links

  • Simple Video Tutorial on Reproduction in Plant
A

Structures

Seeds generated by apomixis are a means of asexual reproduction, involving the formation and dispersal of seeds that do not originate from the fertilization of the embryos. Hawkweed (Hieracium), dandelion (Taraxacum), some Citrus (Citrus) and Kentucky blue grass (Poa pratensis) all use this form of asexual reproduction. Pseudogamy occurs in some plants that have apomictic seeds, where pollination is often needed to initiate embryo growth, though the pollen contributes no genetic material to the developing offspring.[2] Other forms of apomixis occur in plants also, including the generation of a plantlet in replacement of a seed or the generation of bulbils instead of flowers, where new cloned individuals are produced.

[1]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.