World Library  
Flag as Inappropriate
Email this Article

Pneumococcal infection

Article Id: WHEBN0020246683
Reproduction Date:

Title: Pneumococcal infection  
Author: World Heritage Encyclopedia
Language: English
Subject: List of infectious diseases, Ureaplasma infection, Cutaneous Streptococcus iniae infection, Streptococcus mitis, Pneumonia
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Pneumococcal infection

Pneumococcal infection
Classification and external resources
MeSH D011008

Pneumococcal infection refers to an infection caused by Streptococcus pneumoniae.

Types of infection caused

Pneumococcal meningitis

S. pneumoniae is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media and a significant proportion of bacteremia and bacterial meningitis.[1] As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.[2]

Pathogenesis

S. pneumoniae is normally found in the bacteremia) and is carried to the meninges, joint spaces, bones, and peritoneal cavity, and may result in meningitis, brain abscess, septic arthritis, or osteomyelitis.

S. pneumoniae has several virulence factors, including the polysaccharide capsule mentioned earlier, that help it evade a host's immune system. It has pneumococcal surface proteins that inhibit complement-mediated opsonization, and it secretes IgA1 protease that will destroy secretory IgA produced by the body and mediates its attachment to respiratory mucosa.

The risk of pneumococcal infection is much increased in persons with impaired IgG synthesis, impaired phagocytosis, or defective clearance of pneumococci. In particular, the absence of a functional spleen, through congenital asplenia, splenectomy, or sickle-cell disease predisposes one to a more severe course of infection (Overwhelming post-splenectomy infection) and prevention measures are indicated (see asplenia).

People whose immune system is compromised, such as those living with HIV, are also at higher risk of pneumococcal disease.[4] In HIV patients with access to treatment, the risk of invasive pneumoccal disease is 0.2–1% per year and has a fatality rate of 8%.[4]

There is an association between pneumococcal pneumonia and influenza.[5] Damage to the lining of the airways (respiratory epithelium) and upper respiratory system caused by influenza may facilitate pneumococcal entry and infection.

Other risk factors include smoking, injection drug use, Hepatitis C, and COPD.[4]

Virulence factors

S. pneumoniae expresses different virulence factors on its cell surface and inside the organism. These virulence factors contribute to some of the clinical manifestations during infection with S. pneumoniae.

  • Polysaccharide capsule—prevents phagocytosis by host immune cells by inhibiting C3b opsonization of the bacterial cells
  • Pneumolysin (Ply)—a 53-kDa pore-forming protein that can cause lysis of host cells and activate complement
  • Autolysin (LytA)—activation of this protein lyses the bacteria releasing its internal contents (i.e., pneumolysin)
  • Hydrogen peroxide—causes damage to host cells (can cause apoptosis in neuronal cells during meningitis) and has bactericidal effects against competing bacteria (Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus)[6][7]
  • Pili—hair-like structures that extend from the surface of many strains of S. pneumoniae. They contribute to colonization of upper respiratory tract and increase the formation of large amounts of TNF by the immune system during sepsis, raising the possibility of septic shock[8]
  • Choline binding protein A/Pneumococcal surface protein A (CbpA/PspA)—an adhesin that can interact with carbohydrates on the cell surface of pulmonary epithelial cells and can inhibit complement-mediated opsonization of pneumococci

Humoral immunity

In the 19th century, it was demonstrated that immunization of rabbits with killed pneumococci protected them against subsequent challenge with viable pneumococci. Serum from immunized rabbits or from humans who had recovered from pneumococcal pneumonia also conferred protection. In the 20th century, the efficacy of immunization was demonstrated in South African miners.

It was discovered that the pneumococcus's capsule made it resistant to phagocytosis, and in the 1920s it was shown that an antibody specific for capsular polysaccharide aided the killing of S. pneumoniae. In 1936, a pneumococcal capsular polysaccharide vaccine was used to abort an epidemic of pneumococcal pneumonia. In the 1940s, experiments on capsular transformation by pneumococci first identified DNA as the material that carries genetic information.

In 1900, it was recognized that different serovars of pneumococci exist, and that immunization with a given serovar did not protect against infection with other serovars. Since then over ninety serovars have been discovered, each with a unique polysaccharide capsule that can be identified by the quellung reaction. Because some of these serovars cause disease more commonly than others, it is possible to provide reasonable protection by immunizing with less than 90 serovars; the current vaccine contains 23 serovars (i.e., it is "23-valent").

The serovars are numbered according to two systems: the American system, which numbers them in the order in which they were discovered, and the Danish system, which groups them according to antigenic similarities.

Diagnosis

Depending on the nature of infection, an appropriate sample is collected for laboratory identification. Pneumococci are typically gram-positive, cocci, seen in pairs or chains. When cultured on blood agar plates with added optochin antibiotic disk, they show alpha-hemolytic colonies and a clear zone of inhibition around the disk meaning they're sensitive to the antibiotic. Pneumococci are also bile soluble. Just like other streptococci, they are catalase-negative. A Quellung test can identify specific capsular polysaccharides.[9]

Pneumococcal antigen (cell wall C polysaccharide) may be detected in various body fluids. Older detection kits, based on latex agglutination, added little value above Gram staining and were occasionally false-positive. Better results are achieved with rapid immunochromatography, which has a sensitivity (identifies the cause) of 70–80% and >90% specificity (when positive identifies the actual cause) in pneumococcal infections. The test was initially validated on urine samples, but has been applied successfully to other body fluids.[9] Chest X-rays can also be conducted to confirm an infection.

Treatment

Throughout history, treatment relied primarily on β-lactam antibiotics. In the 1960s, nearly all strains of S. pneumoniae were susceptible to [11][12] There is slight clinical evidence that penicillins may act synergistically with macrolides to improve outcomes.[13]

Prevention

Vaccines against Streptococcus pneumoniae are available.

References

  1. ^ Verma R, Khanna P (2012) Pneumococcal conjugate vaccine: A newer vaccine available in India. Hum Vaccin Immunother 8(9)
  2. ^ WHO (2007). "Pneumococcal conjugate vaccine for childhood immunization--WHO position paper" (pdf). Wkly Epidemiol Rec (Geneva: World Health Organization) 82 (12): 93–104. 
  3. ^ Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill.  
  4. ^ a b c Siemieniuk, Reed A.C.; Gregson, Dan B.; Gill, M. John (Nov 2011). "The persisting burden of invasive pneumococcal disease in HIV patients: an observational cohort study". BMC Infectious Diseases 11 (314).  
  5. ^ Walter ND, Taylor TH, Shay DK, et al. (2010). "Influenza Circulation and the Burden of Invasive Pneumococcal Pneumonia during a Non‐pandemic Period in the United States". Clin Infect Dis 50 (2): 175–183.  
  6. ^ Pericone, Christopher D., Overweg, Karin, Hermans, Peter W. M., Weiser, Jeffrey N. (2000). "Inhibitory and Bactericidal Effects of Hydrogen Peroxide Production by Streptococcus pneumoniae on Other Inhabitants of the Upper Respiratory Tract". Infect Immun 68 (7): 3990–3997.  
  7. ^ Regev-Yochay G, Trzcinski K, Thompson CM, Malley R, Lipsitch M. (2006). "Interference between Streptococcus pneumoniae and Staphylococcus aureus: In vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae". J Bacteriol 188 (13): 4996–5001.  
  8. ^ Barocchi M, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei A, Beiter K, Wartha F, von Euler A, Covacci A, Holden D, Normark S, Rappuoli R, Henriques-Normark B (2006). "A pneumococcal pilus influences virulence and host inflammatory responses". Proc Natl Acad Sci USA 103 (8): 2857–2862.  
  9. ^ a b Werno AM, Murdoch DR (March 2008). "Medical microbiology: laboratory diagnosis of invasive pneumococcal disease". Clin. Infect. Dis. 46 (6): 926–32.  
  10. ^ Group For Enteric; Von Gottberg, A.; Klugman, K. P.; Cohen, C.; Wolter, N.; De Gouveia, L.; Du Plessis, M.; Mpembe, R.; Quan, V.; Whitelaw, A.; Hoffmann, R.; Govender, N.; Meiring, S.; Smith, A. M.; Schrag, S. (2008). "Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study". The Lancet 371 (9618): 1108–1113.  
  11. ^ Peterson LR (2006). "Penicillins for treatment of pneumococcal pneumonia: does in vitro resistance really matter?". Clin Infect Dis 42 (2): 224–33.  
  12. ^ Tleyjeh IM, Tlaygeh HM, Hejal R, Montori VM, Baddour LM (2006). "The impact of penicillin resistance on short-term mortality in hospitalized adults with pneumococcal pneumonia: a systematic review and meta-analysis". Clin Infect Dis 42 (6): 788–97.  
  13. ^ Martínez JA, Horcajada JP, Almela M, et al. (2003). "Addition of a Macrolide to a β-Lactam based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia". Clin Infect Dis 36 (4): 389–395.  

External links

  • November 2nd: World Pneumonia Day Website
  • Pneumococcal Vaccine Accelerated Development and Introduction Plan
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.