Point groups in three dimensions
Involutional symmetry
C_{s}, (*)
[ ] =

Cyclic symmetry
C_{nv}, (*nn)
[n] =

Dihedral symmetry
D_{nh}, (*n22)
[n,2] =

Polyhedral group, [n,3], (*n32)

Tetrahedral symmetry
T_{d}, (*332)
[3,3] =

Octahedral symmetry
O_{h}, (*432)
[4,3] =

Icosahedral symmetry
I_{h}, (*532)
[5,3] =

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.
Symmetry groups of objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded 3D object have one or more common fixed points. We choose the origin as one of them.
The symmetry group of an object is sometimes also called full symmetry group, as opposed to its rotation group or proper symmetry group, the intersection of its full symmetry group and the rotation group SO(3) of the 3D space itself. The rotation group of an object is equal to its full symmetry group if and only if the object is chiral.
The point groups in three dimensions are heavily used in chemistry, especially to describe the symmetries of a molecule and of molecular orbitals forming covalent bonds, and in this context they are also called molecular point groups.
Finite Coxeter groups are a special set of point groups generated purely by a set of reflectional mirrors passing through the same point. A rank n Coxeter group has n mirrors and is represented by a CoxeterDynkin diagram. Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups.
Contents

Group structure 1

3D isometries that leave origin fixed 2

Conjugacy 3

Infinite isometry groups 4

Finite isometry groups 5

The seven infinite series of axial groups 6

The seven remaining point groups 7

Relation between orbifold notation and order 8

Reflective Coxeter groups 9

Rotation groups 10

Correspondence between rotation groups and other groups 11

Maximal symmetries 12

The groups arranged by abstract group type 13

Symmetry groups in 3D that are cyclic as abstract group 13.1

Symmetry groups in 3D that are dihedral as abstract group 13.2

Other 13.3

Impossible discrete symmetries 14

Fundamental domain 15

Binary polyhedral groups 16

See also 17

Footnotes 18

References 19

External links 20
Group structure
SO(3) is a subgroup of E^{+}(3), which consists of direct isometries, i.e., isometries preserving orientation; it contains those that leave the origin fixed.
O(3) is the direct product of SO(3) and the group generated by inversion (denoted by its matrix −I):

O(3) = SO(3) × { I , −I }
Thus there is a 1to1 correspondence between all direct isometries and all indirect isometries, through inversion. Also there is a 1to1 correspondence between all groups of direct isometries H in O(3) and all groups K of isometries in O(3) that contain inversion:

K = H × { I , −I }

H = K ∩ SO(3)
For instance, if H is C_{2}, then K is C_{2h}, or if H is C_{3}, then K is S_{6}. (See lower down for the definitions of these groups.)
If a group of direct isometries H has a subgroup L of index 2, then, apart from the corresponding group containing inversion there is also a corresponding group that contains indirect isometries but no inversion:

M = L ∪ ( (H \ L) × { − I } )
where isometry ( A, I ) is identified with A. An example would be C_{4} for H and S_{4} for M.
Thus M is obtained from H by inverting the isometries in H \ L. This group M is as abstract group isomorphic with H. Conversely, for all isometry groups that contain indirect isometries but no inversion we can obtain a rotation group by inverting the indirect isometries. This is clarifying when categorizing isometry groups, see below.
In 2D the cyclic group of kfold rotations C_{k} is for every positive integer k a normal subgroup of O(2,R) and SO(2,R). Accordingly, in 3D, for every axis the cyclic group of kfold rotations about that axis is a normal subgroup of the group of all rotations about that axis. Since any subgroup of index two is normal, the group of rotations (C_{n}) is normal both in the group obtained by adding reflections in planes through the axis (C_{nv}) and in the group obtained by adding a reflection plane perpendicular to the axis (C_{nh}).
3D isometries that leave origin fixed
The isometries of R^{3} that leave the origin fixed, forming the group O(3,R), can be categorized as follows:

SO(3,R):

identity

rotation about an axis through the origin by an angle not equal to 180°

rotation about an axis through the origin by an angle of 180°

the same with inversion (x is mapped to −x), i.e. respectively:

inversion

rotation about an axis by an angle not equal to 180°, combined with reflection in the plane through the origin perpendicular to the axis

reflection in a plane through the origin
The 4th and 5th in particular, and in a wider sense the 6th also, are called improper rotations.
See also the similar overview including translations.
Conjugacy
When comparing the symmetry type of two objects, the origin is chosen for each separately, i.e. they need not have the same center. Moreover, two objects are considered to be of the same symmetry type if their symmetry groups are conjugate subgroups of O(3) (two subgroups H_{1}, H_{2} of a group G are conjugate, if there exists g ∈ G such that H_{1} = g^{−1}H_{2}g ).
For example two 3D objects have the same symmetry type:

if both have mirror symmetry, but with respect to a different mirror plane

if both have 3fold rotational symmetry, but with respect to a different axis.
In the case of multiple mirror planes and/or axes of rotation, two symmetry groups are of the same symmetry type if and only if there is a rotation mapping the whole structure of the first symmetry group to that of the second. (In fact there will be more than one such rotation, but not an infinite number as when there is only one mirror or axis.) The conjugacy definition would also allow a mirror image of the structure, but this is not needed, the structure itself is achiral. For example, if a symmetry group contains a 3fold axis of rotation, it contains rotations in two opposite directions. (The structure is chiral for 11 pairs of space groups with a screw axis.)
Infinite isometry groups
There are many infinite isometry groups; for example, the "cyclic group" (meaning that it is generated by one element – not to be confused with a torsion group) generated by a rotation by an irrational number of turns about an axis. We may create noncyclical abelian groups by adding more rotations around the same axis. There are also nonabelian groups generated by rotations around different axes. These are usually (generically) free groups. They will be infinite unless the rotations are specially chosen.
All the infinite groups mentioned so far are not closed as topological subgroups of O(3). We now discuss topologically closed subgroups of O(3).
The whole O(3) is the symmetry group of spherical symmetry; SO(3) is the corresponding rotation group. The other infinite isometry groups consist of all rotations about an axis through the origin, and those with additionally reflection in the planes through the axis, and/or reflection in the plane through the origin, perpendicular to the axis. Those with reflection in the planes through the axis, with or without reflection in the plane through the origin perpendicular to the axis, are the symmetry groups for the two types of cylindrical symmetry. Note that any physical object having infinite rotational symmetry will also have the symmetry of mirror planes through the axis.
See also rotational symmetry with respect to any angle.
Finite isometry groups
Symmetries in 3D that leave the origin fixed are fully characterized by symmetries on a sphere centered at the origin. For finite 3D point groups, see also spherical symmetry groups.
Up to conjugacy the set of finite 3D point groups consists of:

7 infinite series with at most one morethan2fold rotation axis; they are the finite symmetry groups on an infinite cylinder, or equivalently, those on a finite cylinder. They are sometimes called the axial or prismatic point groups.

7 point groups with multiple 3ormorefold rotation axes; they can also be characterized as point groups with multiple 3fold rotation axes, because all 7 include these axes; with regard to 3ormorefold rotation axes the possible combinations are:

4 3fold axes

4 3fold axes and 3 4fold axes

10 3fold axes and 6 5fold axes
A selection of point groups is compatible with discrete translational symmetry: 27 from the 7 infinite series, and 5 of the 7 others, the 32 socalled crystallographic point groups. See also the crystallographic restriction theorem.
The seven infinite series of axial groups
The infinite series of axial or prismatic groups have an index n, which can be any integer; in each series, the nth symmetry group contains nfold rotational symmetry about an axis, i.e. symmetry with respect to a rotation by an angle 360°/n. n=1 covers the cases of no rotational symmetry at all. There are four series with no other axes of rotational symmetry (see cyclic symmetries) and three with additional axes of 2fold symmetry (see dihedral symmetry). They can be understood as point groups in two dimensions extended with an axial coordinate and reflections in it. They are related to the frieze groups;^{[1]} they can be interpreted as friezegroup patterns repeated n times around a cylinder.
The following table lists several notations for point groups: Hermann–Mauguin notation (used in crystallography), Schönflies notation (used to describe molecular symmetry), orbifold notation, and Coxeter notation. The latter three are not only conveniently related to its properties, but also to the order of the group. It is a unified notation, also applicable for wallpaper groups and frieze groups. The crystallographic groups have n restricted to 1, 2, 3, 4, and 6; removing crystallographic restriction allows any positive integer.
The series are:
Hermann–Mauguin

Schönflies

Orbifold

Coxeter

Frieze

Order

Structure

Comments

Even n

Odd n

(cylinder)

n

C_{n}

nn

[n]^{+}


p1

n

Z_{n}

nfold rotational symmetry

2n

n

S_{2n}

n×

[2n^{+},2^{+}]


p11g

2n

Z_{2n}

Not to be confused with the symmetric groups

n/m

2n

C_{nh}

n*

[n^{+},2]


p11m

2n

Z_{n}×Dih_{1}


nmm

nm

C_{nv}

*nn

[n]


p1m1

2n

Dih_{n}

Pyramidal symmetry; in biology, biradial symmetry

n22

n2

D_{n}

22n

[n,2]^{+}


p211

2n

Dih_{n}

Dihedral symmetry

2n2m

nm

D_{nd}, D_{nv}

2*n

[2n,2^{+}]


p2mg

4n

Dih_{2n}

Antiprismatic symmetry

n/mmm

2n2m

D_{nh}

*22n

[n,2]


p2mm

4n

Dih_{n}×Dih_{1}

Prismatic symmetry

For odd n we have Z_{2n} = Z_{n} × Z_{2} and Dih_{2n} = Dih_{n} × Z_{2}.
The terms horizontal (h) and vertical (v), and the corresponding subscripts, refer to the additional mirror plane, that can be parallel to the rotation axis (vertical) or perpendicular to the rotation axis (horizontal).
The simplest nontrivial ones have Involutional symmetry (abstract group Z_{2} ):
Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
The second of these is the first of the uniaxial groups (cyclic groups) C_{n} of order n (also applicable in 2D), which are generated by a single rotation of angle 360°/n. In addition to this, one may add a mirror plane perpendicular to the axis, giving the group C_{nh} of order 2n, or a set of n mirror planes containing the axis, giving the group C_{nv}, also of order 2n. The latter is the symmetry group for a regular nsided pyramid. A typical object with symmetry group C_{n} or D_{n} is a propeller.
If both horizontal and vertical reflection planes are added, their intersections give n axes of rotation through 180°, so the group is no longer uniaxial. This new group of order 4n is called D_{nh}. Its subgroup of rotations is the dihedral group D_{n} of order 2n, which still has the 2fold rotation axes perpendicular to the primary rotation axis, but no mirror planes. Note that in 2D D_{n} includes reflections, which can also be viewed as flipping over flat objects without distinction of front and backside, but in 3D the two operations are distinguished: the group contains "flipping over", not reflections.
There is one more group in this family, called D_{nd} (or D_{nv}), which has vertical mirror planes containing the main rotation axis, but instead of having a horizontal mirror plane, it has an isometry that combines a reflection in the horizontal plane and a rotation by an angle 180°/n. D_{nh} is the symmetry group for a regular (n+2)sided prisms and also for a regular (2n)sided bipyramid. D_{nd} is the symmetry group for a regular (n+2)sided antiprism, and also for a regular (2n)sided trapezohedron. D_{n} is the symmetry group of a partially rotated prism.
The groups D_{2} and D_{2h} are noteworthy in that there is no special rotation axis. Rather, there are three perpendicular 2fold axes. D_{2} is a subgroup of all the polyhedral symmetries (see below), and D_{2h} is a subgroup of the polyhedral groups T_{h} and O_{h}. D_{2} can occur in homotetramers such as Concanavalin A, in tetrahedral coordination compounds with four identical chiral ligands, or in a molecule such as tetrakis(chlorofluoromethyl)methane if all the chlorofluoromethyl groups have the same chirality. The elements of D_{2} are in 1to2 correspondence with the rotations given by the unit Lipschitz quaternions.
The group S_{n} is generated by the combination of a reflection in the horizontal plane and a rotation by an angle 360°/n. For n odd this is equal to the group generated by the two separately, C_{nh} of order 2n, and therefore the notation S_{n} is not needed; however, for n even it is distinct, and of order n. Like D_{nd} it contains a number of improper rotations without containing the corresponding rotations.
All symmetry groups in the 7 infinite series are different, except for the following four pairs of mutually equal ones:

C_{1h} and C_{1v}: group of order 2 with a single reflection (C_{s} )

D_{1} and C_{2}: group of order 2 with a single 180° rotation

D_{1h} and C_{2v}: group of order 4 with a reflection in a plane and a 180° rotation through a line in that plane

D_{1d} and C_{2h}: group of order 4 with a reflection in a plane and a 180° rotation through a line perpendicular to that plane
S_{2} is the group of order 2 with a single inversion (C_{i} )
"Equal" is meant here as the same up to conjugacy in space. This is stronger than "up to algebraic isomorphism". For example, there are three different groups of order two in the first sense, but there is only one in the second sense. Similarly, e.g. S_{2n} is algebraically isomorphic with Z_{2n}.
The groups may be constructed as follows:

C_{n}. Generated by an element also called C_{n}, which corresponds to a rotation by angle 2π/n around the axis. Its elements are E (the identity), C_{n}, C_{n}^{2}, ..., C_{n}^{n−1}, corresponding to rotation angles 0, 2π/n, 4π/n, ..., 2(n − 1)π/n.

S_{2n}. Generated by element C_{2n}σ_{h}, where σ_{h} is a reflection in the direction of the axis. Its elements are the elements of C_{n} with C_{2n}σ_{h}, C_{2n}^{3}σ_{h}, ..., C_{2n}^{2n−1}σ_{h} added.

C_{nh}. Generated by element C_{n} and reflection σ_{h}. Its elements are the elements of group C_{n}, with elements σ_{h}, C_{n}σ_{h}, C_{n}^{2}σ_{h}, ..., C_{n}^{n−1}σ_{h} added.

C_{nv}. Generated by element C_{n} and reflection σ_{v} in a direction in the plane perpendicular to the axis. Its elements are the elements of group C_{n}, with elements σ_{v}, C_{n}σ_{v}, C_{n}^{2}σ_{v}, ..., C_{n}^{n−1}σ_{v} added.

D_{n}. Generated by element C_{n} and 180° rotation U = σ_{h}σ_{v} around a direction in the plane perpendicular to the axis. Its elements are the elements of group C_{n}, with elements U, C_{n}U, C_{n}^{2}U, ..., C_{n}^{n − 1}U added.

D_{nd}. Generated by elements C_{2n}σ_{h} and σ_{v}. Its elements are the elements of group C_{n} and the additional elements of S_{2n} and C_{nv}, with elements C_{2n}σ_{h}σ_{v}, C_{2n}^{3}σ_{h}σ_{v}, ..., C_{2n}^{2n − 1}σ_{h}σ_{v} added.

D_{nh}. Generated by elements C_{n}, σ_{h}, and σ_{v}. Its elements are the elements of group C_{n} and the additional elements of C_{nh}, C_{nv}, and D_{n}.
Taking n to ∞ yields groups with continuous axial rotations:
H–M

Schönflies

Orbifold

Coxeter

Limit of

Abstract group

∞

C_{∞}

∞∞

[∞]^{+}


C_{n}

Z_{∞}

SO(2)

∞, ∞/m

C_{∞h}

∞*

[2,∞^{+}]


C_{nh}, S_{2n}

Dih_{1}×Z_{∞}

Z_{2}×SO(2)

∞m

C_{∞v}

*∞∞

[∞]


C_{nv}

Dih_{∞}

O(2)

∞2

D_{∞}

22∞

[2,∞]^{+}


D_{n}

Dih_{∞}

O(2)

∞m, ∞/mm

D_{∞h}

*22∞

[2,∞]


D_{nh}, D_{nd}

Dih_{1}×Z_{∞}

Z_{2}×O(2)

The seven remaining point groups
The remaining point groups are said to be of very high or polyhedral symmetry because they have more than one rotation axis of order greater than 2. Here, C_{n} denotes an axis of rotation through 360°/n and S_{n} denotes an axis of improper rotation through the same. In parentheses are the orbifold notation, Coxeter notation (Coxeter diagram), the full Hermann–Mauguin notation, and the abbreviated one if different. The groups are:

T (332, [3,3]^{+} (), 23) of order 12 – chiral tetrahedral symmetry. There are four C_{3} axes, each through two vertices of a cube (body diagonals) or one of a regular tetrahedron, and three C_{2} axes, through the centers of the cube's faces, or the midpoints of the tetrahedron's edges. This group is isomorphic to A_{4}, the alternating group on 4 elements, and is the rotation group for a regular tetrahedron. It is a normal subgroup of T_{d}, T_{h}, and the octahedral symmetries. The elements of the group correspond 1to2 to the rotations given by the 24 unit Hurwitz quaternions (the "binary tetrahedral group").

T_{d} (*332, [3,3] (), 43m) of order 24 – full tetrahedral symmetry. This group has the same rotation axes as T, but with six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single C_{2} axis and two C_{3} axes. The C_{2} axes are now actually S_{4} axes. This group is the symmetry group for a regular tetrahedron. T_{d} is isomorphic to S_{4}, the symmetric group on 4 letters, because there is a 1to1 correspondence between the elements of T_{d} and the 24 permutations of the four 3fold axes. An object of C_{3v} symmetry under one of the 3fold axes gives rise under the action of T_{d} to an orbit consisting of four such objects, and T_{d} corresponds to the set of permutations of these four objects. T_{d} is a normal subgroup of O_{h}. See also the isometries of the regular tetrahedron.

T_{h} (3*2, [3^{+},4] (), 2/m3, m3) of order 24 – pyritohedral symmetry.
This group has the same rotation axes as T, with mirror planes parallel to the cube faces. The C_{3} axes become S_{6} axes, and there is inversion symmetry. T_{h} is isomorphic to A_{4} × Z_{2} (since T and C_{i} are both normal subgroups), and not to the symmetric group S_{4}. It is the symmetry of a cube with on each face a line segment dividing the face into two equal rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the even permutations of the body diagonals and the same combined with inversion. It is also the symmetry of a pyritohedron, which is similar to the cube described, with each rectangle replaced by a pentagon with one symmetry axis and 4 equal sides and 1 different side (the one corresponding to the line segment dividing the cube's face); i.e., the cube's faces bulge out at the dividing line and become narrower there. It is a subgroup (but not a normal subgroup) of the full icosahedral symmetry group (as isometry group, not just as abstract group), with 4 of the 10 3fold axes. It is a normal subgroup of O_{h}.

O (432, [4,3]^{+} (), 432) of order 24 – chiral octahedral symmetry. This group is like T, but the C_{2} axes are now C_{4} axes, and additionally there are 6 C_{2} axes, through the midpoints of the edges of the cube. This group is also isomorphic to S_{4} because its elements are in 1to1 correspondence to the 24 permutations of the 3fold axes, as with T. An object of D_{3} symmetry under one of the 3fold axes gives rise under the action of O to an orbit consisting of four such objects, and O corresponds to the set of permutations of these four objects. It is the rotation group of the cube and octahedron. Representing rotations with quaternions, O is made up of the 24 unit Hurwitz quaternions and the 24 Lipschitz quaternions of squared norm 2 normalized by dividing by \sqrt 2. As before, this is a 1to2 correspondence.

O_{h} (*432, [4,3] (), 4/m32/m, m3m) of order 48 – full octahedral symmetry. This group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of T_{d} and T_{h}. This group is isomorphic to S_{4} × Z_{2} (because both O and C_{i} are normal subgroups), and is the symmetry group of the cube and octahedron. See also the isometries of the cube.

I (532, [5,3]^{+} (), 532) of order 60 – chiral icosahedral symmetry; the rotation group of the icosahedron and the dodecahedron. It is a normal subgroup of index 2 in the full group of symmetries I_{h}. The group contains 10 versions of D_{3} and 6 versions of D_{5} (rotational symmetries like prisms and antiprisms). It also contains five versions of T_{h} (see Compound of five tetrahedra). The group I is isomorphic to A_{5}, the alternating group on 5 letters, since its elements correspond 1to1 with even permutations of the five T_{h} symmetries (or the five tetrahedra just mentioned).

I_{h} (*532, [5,3] (), 532/m, 53m) of order 120 – full icosahedral symmetry; the symmetry group of the icosahedron and the dodecahedron. The group I_{h} is isomorphic to A_{5} × Z_{2} because I and C_{i} are both normal subgroups. The group contains 10 versions of D_{3d}, 6 versions of D_{5d} (symmetries like antiprisms), and 5 versions of T_{h}.
The continuous groups related to these groups are:

K or SO(3), all possible rotations.

K_{h} or O(3), all possible rotations and reflections.
As noted above for infinite rotation groups, any physical object having K symmetry will also have K_{h} symmetry.
Relation between orbifold notation and order
The order of each group is 2 divided by the orbifold Euler characteristic; the latter is 2 minus the sum of the feature values, assigned as follows:

n without or before * counts as (n−1)/n

n after * counts as (n−1)/(2n)

* and × count as 1
This can also be applied for wallpaper groups and frieze groups: for them, the sum of the feature values is 2, giving an infinite order; see orbifold Euler characteristic for wallpaper groups
Reflective Coxeter groups
Fundamental domains of 3D Coxeter groups
A_{3}, [3,3]

BC_{3}, [4,3]

H_{3}, [5,3]

6 mirrors

3+6 mirrors

15 mirrors

A_{1}×A_{1}, [1,2]

A_{1}×A_{1}×A_{1}, [2,2]

I_{2}(3)×A_{1}, [2,3]


2 mirrors

3 mirrors

4 mirrors

A_{1}, [1]

A_{1}×A_{1}, [2]

I_{2}(3), [3]

1 mirror

2 mirrors

3 mirrors

The reflective point groups in three dimensions are also called Coxeter groups and can be given by a CoxeterDynkin diagram and represent a set of mirrors that intersect at one central point, and bound a spherical triangle domain on the surface of a sphere. Coxeter groups with less than 3 generators have degenerate spherical triangle domains, as lunes or a hemisphere. In Coxeter notation these groups are tetrahedral symmetry [3,3], octahedral symmetry [4,3], icosahedral symmetry [5,3], and dihedral symmetry [p,2]. The number of mirrors for an irreducible group is nh/2, where h is the Coxeter group's Coxeter number, n is the dimension (3).^{[2]}
Rotation groups
The rotation groups, i.e. the finite subgroups of SO(3), are: the cyclic groups C_{n} (the rotation group of a canonical pyramid), the dihedral groups D_{n} (the rotation group of a uniform prism, or canonical bipyramid), and the rotation groups T, O and I of a regular tetrahedron, octahedron/cube and icosahedron/dodecahedron.
In particular, the dihedral groups D_{3}, D_{4} etc. are the rotation groups of plane regular polygons embedded in threedimensional space, and such a figure may be considered as a degenerate regular prism. Therefore it is also called a dihedron (Greek: solid with two faces), which explains the name dihedral group.

An object with symmetry group C_{n}, C_{nh}, C_{nv} or S_{2n} has rotation group C_{n}.

An object with symmetry group D_{n}, D_{nh}, or D_{nd} has rotation group D_{n}.

An object with one of the other seven symmetry groups has as rotation group the corresponding one without subscript: T, O or I.
The rotation group of an object is equal to its full symmetry group if and only if the object is chiral. In other words, the chiral objects are those with their symmetry group in the list of rotation groups.
Given in Schönflies notation, Coxeter notation, (orbifold notation), the rotation subgroups are:
Reflection

Reflection/rotational

Improper rotation

Rotation

C_{nv}, [n], (*nn)

C_{nh}, [n^{+},2], (n*)

S_{2n}, [2n^{+},2^{+}], (n×)

C_{n}, [n]^{+}, (nn)

D_{nh}, [2,n], (*n22)

D_{nd}, [2^{+},2n], (2*n)


D_{n}, [2,n]^{+}, (n22)

T_{d}, [3,3], (*332)



T, [3,3]^{+}, (332)

O_{h}, [4,3], (*432)

T_{h}, [3^{+},4], (3*2)


O, [4,3]^{+}, (432)

I_{h}, [5,3], (*532)



I, [5,3]^{+}, (532)

Correspondence between rotation groups and other groups
The following groups contain inversion:

C_{nh} and D_{nh} for even n

S_{2n} and D_{nd} for odd n (S_{2} = C_{i} is the group generated by inversion; D_{1d} = C_{2h})

T_{h}, O_{h}, and I_{h}
As explained above, there is a 1to1 correspondence between these groups and all rotation groups:

C_{nh} for even n and S_{2n} for odd n correspond to C_{n}

D_{nh} for even n and D_{nd} for odd n correspond to D_{n}

T_{h}, O_{h}, and I_{h} correspond to T, O, and I, respectively.
The other groups contain indirect isometries, but not inversion:

C_{nv}

C_{nh} and D_{nh} for odd n

S_{2n} and D_{nd} for even n

T_{d}
They all correspond to a rotation group H and a subgroup L of index 2 in the sense that they are obtained from H by inverting the isometries in H \ L, as explained above:

C_{n} is subgroup of D_{n} of index 2, giving C_{nv}

C_{n} is subgroup of C_{2n} of index 2, giving C_{nh} for odd n and S_{2n} for even n

D_{n} is subgroup of D_{2n} of index 2, giving D_{nh} for odd n and D_{nd} for even n

T is subgroup of O of index 2, giving T_{d}
Maximal symmetries
There are two discrete point groups with the property that no discrete point group has it as proper subgroup: O_{h} and I_{h}. Their largest common subgroup is T_{h}. The two groups are obtained from it by changing 2fold rotational symmetry to 4fold, and adding 5fold symmetry, respectively. Alternatively the two groups are generated by adding for each a reflection plane to T_{h}.
There are two crystallographic point groups with the property that no crystallographic point group has it as proper subgroup: O_{h} and D_{6h}. Their maximal common subgroups, depending on orientation, are D_{3d} and D_{2h}.
The groups arranged by abstract group type
Below the groups explained above are arranged by abstract group type.
The smallest abstract groups that are not any symmetry group in 3D, are the quaternion group (of order 8), Z_{3} × Z_{3} (of order 9), the dicyclic group Dic_{3} (of order 12), and 10 of the 14 groups of order 16.
The column "# of order 2 elements" in the following tables shows the total number of isometry subgroups of types C_{2}, C_{i}, C_{s}. This total number is one of the characteristics helping to distinguish the various abstract group types, while their isometry type helps to distinguish the various isometry groups of the same abstract group.
Within the possibilities of isometry groups in 3D, there are infinitely many abstract group types with 0, 1 and 3 elements of order 2, there are two with 2n + 1 elements of order 2, and there are three with 2n + 3 elements of order 2 (for each n ≥ 2 ). There is never a positive even number of elements of order 2.
Symmetry groups in 3D that are cyclic as abstract group
The symmetry group for nfold rotational symmetry is C_{n}; its abstract group type is cyclic group Z_{n}, which is also denoted by C_{n}. However, there are two more infinite series of symmetry groups with this abstract group type:

For even order 2n there is the group S_{2n} (Schoenflies notation) generated by a rotation by an angle 180°/n about an axis, combined with a reflection in the plane perpendicular to the axis. For S_{2} the notation C_{i} is used; it is generated by inversion.

For any order 2n where n is odd, we have C_{nh}; it has an nfold rotation axis, and a perpendicular plane of reflection. It is generated by a rotation by an angle 360°/n about the axis, combined with the reflection. For C_{1h} the notation C_{s} is used; it is generated by reflection in a plane.
Thus we have, with bolding of the 10 cyclic crystallographic point groups, for which the crystallographic restriction applies:
Order

Isometry groups

Abstract group

# of order 2 elements

Cycle diagram

1

C_{1}

Z_{1}

0


2

C_{2}, C_{i}, C_{s}

Z_{2}

1


3

C_{3}

Z_{3}

0


4

C_{4}, S_{4}

Z_{4}

1


5

C_{5}

Z_{5}

0


6

C_{6}, S_{6}, C_{3h}

Z_{6} = Z_{3} × Z_{2}

1


7

C_{7}

Z_{7}

0


8

C_{8}, S_{8}

Z_{8}

1


9

C_{9}

Z_{9}

0


10

C_{10}, S_{10}, C_{5h}

Z_{10} = Z_{5} × Z_{2}

1


etc.
Symmetry groups in 3D that are dihedral as abstract group
In 2D dihedral group D_{n} includes reflections, which can also be viewed as flipping over flat objects without distinction of front and backside.
However, in 3D the two operations are distinguished: the symmetry group denoted by D_{n} contains n 2fold axes perpendicular to the nfold axis, not reflections. D_{n} is the rotation group of the nsided prism with regular base, and nsided bipyramid with regular base, and also of a regular, nsided antiprism and of a regular, nsided trapezohedron. The group is also the full symmetry group of such objects after making them chiral by e.g. an identical chiral marking on every face, or some modification in the shape.
The abstract group type is dihedral group Dih_{n}, which is also denoted by D_{n}. However, there are three more infinite series of symmetry groups with this abstract group type:

C_{nv} of order 2n, the symmetry group of a regular nsided pyramid

D_{nd} of order 4n, the symmetry group of a regular nsided antiprism

D_{nh} of order 4n for odd n. For n = 1 we get D_{2}, already covered above, so n ≥ 3.
Note the following property:

Dih_{4n+2} \cong Dih_{2n+1} × Z_{2}
Thus we have, with bolding of the 12 crystallographic point groups, and writing D_{1d} as the equivalent C_{2h}:
Order

Isometry groups

Abstract group

# of order 2 elements

Cycle diagram

4

D_{2}, C_{2v}, C_{2h}

Dih_{2} = Z_{2} × Z_{2}

3


6

D_{3}, C_{3v}

Dih_{3}

3


8

D_{4}, C_{4v}, D_{2d}

Dih_{4}

5


10

D_{5}, C_{5v}

Dih_{5}

5


12

D_{6}, C_{6v}, D_{3d}, D_{3h}

Dih_{6} = Dih_{3} × Z_{2}

7


14

D_{7}, C_{7v}

Dih_{7}

7


16

D_{8}, C_{8v}, D_{4d}

Dih_{8}

9


18

D_{9}, C_{9v}

Dih_{9}

9


20

D_{10}, C_{10v}, D_{5h}, D_{5d}

Dih_{10} = D_{5} × Z_{2}

11


etc.
Other
C_{2n,h} of order 4n is of abstract group type Z_{2n} × Z_{2}. For n = 1 we get Dih_{2}, already covered above, so n ≥ 2.
Thus we have, with bolding of the 2 cyclic crystallographic point groups:
Order

Isometry group

Abstract group

# of order 2 elements

Cycle diagram

8

C_{4h}

Z_{4} × Z_{2}

3


12

C_{6h}

Z_{6} × Z_{2} = Z_{3} × Z_{2}^{2} = Z_{3} × Dih_{2}

3


16

C_{8h}

Z_{8} × Z_{2}

3


20

C_{10h}

Z_{10} × Z_{2} = Z_{5} × Z_{2}^{2} = Z_{5} × Dih_{2}

3


etc.
D_{nh} of order 4n is of abstract group type Dih_{n} × Z_{2}. For odd n this is already covered above, so we have here D_{2nh} of order 8n, which is of abstract group type Dih_{2n} × Z_{2} (n≥1).
Thus we have, with bolding of the 3 dihedral crystallographic point groups:
Order

Isometry group

Abstract group

# of order 2 elements

Cycle diagram

8

D_{2h}

Dih_{2} × Z_{2}

7


16

D_{4h}

Dih_{4} × Z_{2}

11


24

D_{6h}

Dih_{6} × Z_{2} = Dih_{3} × Z_{2}^{2}

15


32

D_{8h}

Dih_{8} × Z_{2}

19


etc.
The remaining seven are, with bolding of the 5 crystallographic point groups (see also above):
Order

Isometry group

Abstract group

# of order 2 elements

Cycle diagram

12

T

A_{4}

3


24

T_{d}, O

S_{4}

6


24

T_{h}

A_{4} × Z_{2}

6


48

O_{h}

S_{4} × Z_{2}

6


60

I

A_{5}



120

I_{h}

A_{5} × Z_{2}



Impossible discrete symmetries
Since the overview is exhaustive, it also shows implicitly what is not possible as discrete symmetry group. For example:

a C_{6} axis in one direction and a C_{3} in another

a C_{5} axis in one direction and a C_{4} in another

a C_{3} axis in one direction and another C_{3} axis in a perpendicular direction
etc.
Fundamental domain
Disdyakis triacontahedron


The fundamental domain of a point group is a conic solid. An object with a given symmetry in a given orientation is characterized by the fundamental domain. If the object is a surface it is characterized by a surface in the fundamental domain continuing to its radial bordal faces or surface. If the copies of the surface do not fit, radial faces or surfaces can be added. They fit anyway if the fundamental domain is bounded by reflection planes.
For a polyhedron this surface in the fundamental domain can be part of an arbitrary plane. For example, in the disdyakis triacontahedron one full face is a fundamental domain of icosahedral symmetry. Adjusting the orientation of the plane gives various possibilities of combining two or more adjacent faces to one, giving various other polyhedra with the same symmetry. The polyhedron is convex if the surface fits to its copies and the radial line perpendicular to the plane is in the fundamental domain.
Also the surface in the fundamental domain may be composed of multiple faces.
Binary polyhedral groups
The map Spin(3) → SO(3) is the double cover of the rotation group by the spin group in 3 dimensions. (This is the only connected cover of SO(3), since Spin(3) is simply connected.) By the lattice theorem, there is a Galois connection between subgroups of Spin(3) and subgroups of SO(3) (rotational point groups): the image of a subgroup of Spin(3) is a rotational point group, and the preimage of a point group is a subgroup of Spin(3).
The preimage of a finite point group is called a binary polyhedral group, represented as , and is called by the same name as its point group, with the prefix binary, with double the order of the related polyhedral group (l,m,n). For instance, the preimage of the icosahedral group (2,3,5) is the binary icosahedral group, <2,3,5>.
The binary polyhedral groups are:

A_n: binary cyclic group of an (n + 1)gon, order 2n

D_n: binary dihedral group of an ngon, <2,2,n>, order 4n

E_6: binary tetrahedral group, <2,3,3>, order 24

E_7: binary octahedral group, <2,3,4>, order 48

E_8: binary icosahedral group, <2,3,5>, order 120
These are classified by the ADE classification, and the quotient of C^{2} by the action of a binary polyhedral group is a Du Val singularity.^{[3]}
For point groups that reverse orientation, the situation is more complicated, as there are two pin groups, so there are two possible binary groups corresponding to a given point group.
Note that this is a covering of groups, not a covering of spaces – the sphere is simply connected, and thus has no covering spaces. There is thus no notion of a "binary polyhedron" that covers a 3dimensional polyhedron. Binary polyhedral groups are discrete subgroups of a Spin group, and under a representation of the spin group act on a vector space, and may stabilize a polyhedron in this representation – under the map Spin(3) → SO(3) they act on the same polyhedron that the underlying (nonbinary) group acts on, while under spin representations or other representations they may stabilize other polyhedra.
This is in contrast to projective polyhedra – the sphere does cover projective space (and also lens spaces), and thus a tessellation of projective space or lens space yields a distinct notion of polyhedron.
See also

^ Fisher, G.L.; Mellor, B. (2007), "Threedimensional finite point groups and the symmetry of beaded beads" (PDF),

^ Coxeter, Regular polytopes', §12.6 The number of reflections, equation 12.61

^ Du Val Singularities, by Igor Burban
References

.

Coxeter, H. S. M. and Moser, W. O. J. (1980). Generators and Relations for Discrete Groups, 4th edition. New York: SpringerVerlag. 6.5 The binary polyhedral groups, p. 68

External links

Graphic overview of the 32 crystallographic point groups – form the first parts (apart from skipping n=5) of the 7 infinite series and 5 of the 7 separate 3D point groups

Overview of properties of point groups

Simplest Canonical Polyhedra of Each Symmetry Type (uses Java)

Point Groups and Crystal Systems, by YiShu Wei, pp. 4–6

The Geometry Center: 10.1 Formulas for Symmetries in Cartesian Coordinates (three dimensions)
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.