World Library  
Flag as Inappropriate
Email this Article

Round window

Article Id: WHEBN0004111905
Reproduction Date:

Title: Round window  
Author: World Heritage Encyclopedia
Language: English
Subject: Inner ear, Analog ear, Cochlear cupula, Sulcus spiralis internus, Crista ampullaris
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Round window

Round window
Middle ear, with round window at right.
Interior of right osseous labyrinth (label is cochlear fenestra, at bottom center)
Details
Latin Fenestra cochleae, fenestra rotunda
Identifiers
Gray's p.1051
MeSH A09.246.631.246.814
Dorlands
/Elsevier
f_04/12357941
Anatomical terminology

The round window is one of the two openings into the inner ear. It is closed off from the middle ear by the round window membrane, which vibrates with opposite phase to vibrations entering the inner ear through the oval window. It allows fluid in the cochlea to move, which in turn ensures that hair cells of the basilar membrane will be stimulated and that audition will occur.

Structure

The round window is situated below and a little behind the oval window, from which it is separated by a rounded elevation, the promontory.

It is placed at the bottom of a funnel-shaped depression (the round window niche) and, in the macerated bone, opens into the cochlea of the internal ear; in the fresh state it is closed by a membrane, the secondary tympanic membrane or round window membrane, which is a complex saddle point shape. The visible central portion is concave toward the tympanic cavity and convex toward the cochlea but towards the edges, where it is hidden in the round window niche, it curves the other way.

This membrane consists of three layers:

  • an external, or mucous, derived from the mucous lining of the tympanic cavity;
  • an internal, from the lining membrane of the cochlea;
  • and an intermediate, or fibrous layer.

Both the oval and round windows are about the same size, approximately 2.5 mm2. The entrance to the round window niche is often much smaller than this.

Function

The stapes bone transmits movement to the oval window. As the stapes footplate moves into the oval window, the round window membrane moves out, and this allows movement of the fluid within the cochlea, leading to movement of the cochlear inner hair cells and thus hearing. If the round window were to be absent or rigidly fixed (as can happen in some congenital abnormalities), the stapes footplate would be pushing incompressible fluid against the unyielding walls of the cochlea. It would therefore not move to any useful degree leading to a hearing loss of about 60dB. This is, unsurprisingly, the same as for conditions where the stapes itself is fixed, such as otosclerosis.

Clinical significance

The round window sometimes fails to develop correctly and causes the hearing loss mentioned above. Unfortunately round window malformations are often associated with other ear malformations and the hearing loss can be much more severe. Some types of ear surgery (now generally abandoned) used to leave the round window open to the outside world and covered over the oval window. Sound pressure therefore hit the round window but was shielded from the oval window. It therefore travelled "backwards" around the cochlea but still gave useful hearing as the hair cells were still deflected in the same way. The round window is often used as an approach for cochlear implant surgery. It has also recently been used as a site to place middle ear implantable hearing aid transducers. This work has been publicised by Prof. Vittorio Colletti in Verona.[1]

Additional images

See also

This article uses anatomical terminology; for an overview, see anatomical terminology.

References

This article incorporates text from a public domain edition of Gray's Anatomy.

  1. ^ Colletti V, Soli SD, Carner M, Colletti L (2006). "Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window". International journal of audiology 45 (10): 600–8.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.