World Library  
Flag as Inappropriate
Email this Article

Spalart–Allmaras turbulence model

Article Id: WHEBN0008190304
Reproduction Date:

Title: Spalart–Allmaras turbulence model  
Author: World Heritage Encyclopedia
Language: English
Subject: Navier–Stokes equations, Index of physics articles (S)
Publisher: World Heritage Encyclopedia

Spalart–Allmaras turbulence model

The Spalart–Allmaras model is a one equation model for turbulent viscosity. It solves a transport equation for a viscosity-like variable \tilde{\nu}. This may be referred to as the Spalart–Allmaras variable.

Original model

The turbulent eddy viscosity is given by

\nu_t = \tilde{\nu} f_{v1}, \quad f_{v1} = \frac{\chi^3}{\chi^3 + C^3_{v1}}, \quad \chi := \frac{\tilde{\nu}}{\nu}
\frac{\partial \tilde{\nu}}{\partial t} + u_j \frac{\partial \tilde{\nu}}{\partial x_j} = C_{b1} [1 - f_{t2}] \tilde{S} \tilde{\nu} + \frac{1}{\sigma} \{ \nabla \cdot [(\nu + \tilde{\nu}) \nabla \tilde{\nu}] + C_{b2} | \nabla \nu |^2 \} - \left[C_{w1} f_w - \frac{C_{b1}}{\kappa^2} f_{t2}\right] \left( \frac{\tilde{\nu}}{d} \right)^2 + f_{t1} \Delta U^2
\tilde{S} \equiv S + \frac{ \tilde{\nu} }{ \kappa^2 d^2 } f_{v2}, \quad f_{v2} = 1 - \frac{\chi}{1 + \chi f_{v1}}
f_w = g \left[ \frac{ 1 + C_{w3}^6 }{ g^6 + C_{w3}^6 } \right]^{1/6}, \quad g = r + C_{w2}(r^6 - r), \quad r \equiv \frac{\tilde{\nu} }{ \tilde{S} \kappa^2 d^2 }
f_{t1} = C_{t1} g_t \exp\left( -C_{t2} \frac{\omega_t^2}{\Delta U^2} [ d^2 + g^2_t d^2_t] \right)
f_{t2} = C_{t3} \exp\left(-C_{t4} \chi^2 \right)
S = \sqrt{2 \Omega_{ij} \Omega_{ij}}

The rotation tensor is given by

\Omega_{ij} = \frac{1}{2} ( \partial u_i / \partial x_j - \partial u_j / \partial x_i )

and d is the distance from the closest surface.

The constants are

\begin{matrix} \sigma &=& 2/3\\ C_{b1} &=& 0.1355\\ C_{b2} &=& 0.622\\ \kappa &=& 0.41\\ C_{w1} &=& C_{b1}/\kappa^2 + (1 + C_{b2})/\sigma \\ C_{w2} &=& 0.3 \\ C_{w3} &=& 2 \\ C_{v1} &=& 7.1 \\ C_{t1} &=& 1 \\ C_{t2} &=& 2 \\ C_{t3} &=& 1.1 \\ C_{t4} &=& 2 \end{matrix}

Modifications to original model

According to Spalart it is safer to use the following values for the last two constants:

\begin{matrix} C_{t3} &=& 1.2 \\ C_{t4} &=& 0.5 \end{matrix}

Other models related to the S-A model:

DES (1999) [1]

DDES (2006)

Model for compressible flows

There are two approaches to adapting the model for compressible flows. In the first approach, the turbulent dynamic viscosity is computed from

\mu_t = \rho \tilde{\nu} f_{v1}

where \rho is the local density. The convective terms in the equation for \tilde{\nu} are modified to

\frac{\partial \tilde{\nu}}{\partial t} + \frac{\partial}{\partial x_j} (\tilde{\nu} u_j)= \mbox{RHS}

where the right hand side (RHS) is the same as in the original model.

Boundary conditions

Walls: \tilde{\nu}=0


Ideally \tilde{\nu}=0, but some solvers can have problems with a zero value, in which case \tilde{\nu}<=\frac{\nu}{2} can be used.

This is if the trip term is used to "start up" the model. A convenient option is to set \tilde{\nu}=5{\nu} in the freestream. The model then provides "Fully Turbulent" behavior, i.e., it becomes turbulent in any region that contains shear.

Outlet: convective outlet.


  • Spalart, P. R. and Allmaras, S. R., 1992, "A One-Equation Turbulence Model for Aerodynamic Flows" AIAA Paper 92-0439

External links

  • This article was based on the Spalart-Allmaras model article in CFD-Wiki
  • What Are the Spalart-Allmaras Turbulence Models? from
  • The Spalart-Allmaras Turbulence Model at NASA's Langley Research Center Turbulence Modelling Resource site
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.