World Library  
Flag as Inappropriate
Email this Article

Standard basis

Article Id: WHEBN0000462005
Reproduction Date:

Title: Standard basis  
Author: World Heritage Encyclopedia
Language: English
Subject: Basis (linear algebra), Determinant, Curvilinear coordinates, Rotation group SO(3), Cross product
Collection: Linear Algebra
Publisher: World Heritage Encyclopedia

Standard basis

Every vector a in three dimensions is a linear combination of the standard basis vectors i, j, and k.

In mathematics, the standard basis (also called natural basis or canonical basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system. For example, the standard basis for the Euclidean plane is formed by vectors

\mathbf{e}_x = (1,0),\quad \mathbf{e}_y = (0,1),

and the standard basis for three-dimensional space is formed by vectors

\mathbf{e}_x = (1,0,0),\quad \mathbf{e}_y = (0,1,0),\quad \mathbf{e}_z=(0,0,1).

Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction. There are several common notations for these vectors, including {exeyez}, {e1e2e3}, {ijk}, and {xyz}. These vectors are sometimes written with a hat to emphasize their status as unit vectors. Each of these vectors is sometimes referred to as the versor of the corresponding Cartesian axis.

These vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely as

v_x\,\mathbf{e}_x + v_y\,\mathbf{e}_y + v_z\,\mathbf{e}_z,

the scalars vxvyvz being the scalar components of the vector v.

In n-dimensional Euclidean space, the standard basis consists of n distinct vectors

\{ \mathbf{e}_i : 1\leq i\leq n\},

where ei denotes the vector with a 1 in the ith coordinate and 0's elsewhere.

Standard bases can be defined for other vector spaces, such as polynomials and matrices. In both cases, the standard basis consists of the elements of the vector space such that all coefficients but one are 0 and the non-zero one is 1. For polynomials, the standard basis thus consists of the monomials and is commonly called monomial basis. For matrices \mathcal{M}_{m \times n}, the standard basis consists of the m×n-matrices with exactly one non-zero entry, which is 1. For example, the standard basis for 2×2 matrices is formed by the 4 matrices

\mathbf{e}_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\quad \mathbf{e}_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\quad \mathbf{e}_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\quad \mathbf{e}_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.


  • Properties 1
  • Generalizations 2
  • Other usages 3
  • See also 4
  • References 5


By definition, the standard basis is a sequence of orthogonal unit vectors. In other words, it is an ordered and orthonormal basis.

However, an ordered orthonormal basis is not necessarily a standard basis. For instance the two vectors representing a 30° rotation of the 2D standard basis described above, i.e.

v_1 = \left( {\sqrt 3 \over 2} , {1 \over 2} \right) \,
v_2 = \left( {1 \over 2} , {-\sqrt 3 \over 2} \right) \,

are also orthogonal unit vectors, but they are not aligned with the axes of the Cartesian coordinate system, so the basis with these vectors does not meet the definition of standard basis.


There is a standard basis also for the ring of polynomials in n indeterminates over a field, namely the monomials.

All of the preceding are special cases of the family

{(e_i)}_{i\in I}= ( (\delta_{ij} )_{j \in I} )_{i \in I}

where I is any set and \delta_{ij} is the Kronecker delta, equal to zero whenever i≠j and equal to 1 if i=j. This family is the canonical basis of the R-module (free module)


of all families


from I into a ring R, which are zero except for a finite number of indices, if we interpret 1 as 1R, the unit in R.

Other usages

The existence of other 'standard' bases has become a topic of interest in algebraic geometry, beginning with work of Hodge from 1943 on Grassmannians. It is now a part of representation theory called standard monomial theory. The idea of standard basis in the universal enveloping algebra of a Lie algebra is established by the Poincaré–Birkhoff–Witt theorem.

Gröbner bases are also sometimes called standard bases.

In physics, the standard basis vectors for a given Euclidean space are sometimes referred to as the versors of the axes of the corresponding Cartesian coordinate system.

See also


  • Ryan, Patrick J. (1986). Euclidean and non-Euclidean geometry: an analytical approach. Cambridge; New York: Cambridge University Press. (page 198)  
  • Schneider, Philip J.; Eberly, David H. (2003). Geometric tools for computer graphics. Amsterdam; Boston: Morgan Kaufmann Publishers. (page 112)  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.