In functional analysis, a branch of mathematics, the strong operator topology, often abbreviated SOT, is the locally convex topology on the set of bounded operators on a Hilbert space H induced by the seminorms of the form T\mapsto\|Tx\|, as x varies in H.
Equivalently, it is the coarsest topology such that the evaluation maps T\mapsto Tx (taking values in H) are continuous for any x in H. The equivalence of these two definitions can be seen by observing that a subbase for both topologies is given by the sets U(T_0,x,\epsilon)=\{T:\|Tx-T_0x\|<\epsilon\} (where T_{0} is any bounded operator on H, x is any vector and ε is any positive real number).
The SOT is stronger than the weak operator topology and weaker than the norm topology.
The SOT lacks some of the nicer properties that the weak operator topology has, but being stronger, things are sometimes easier to prove in this topology. It is more natural too, since it is simply the topology of pointwise convergence for an operator.
The SOT topology also provides the framework for the measurable functional calculus, just as the norm topology does for the continuous functional calculus.
The linear functionals on the set of bounded operators on a Hilbert space that are continuous in the SOT are precisely those continuous in the WOT. Because of this, the closure of a convex set of operators in the WOT is the same as the closure of that set in the SOT.
It should also be noted that the above language translates into convergence properties of Hilbert space operators. One especially observes that for a complex Hilbert space, by way of the polarization identity, one easily verifies that Strong Operator convergence implies Weak Operator convergence.
See also
References
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.