World Library  
Flag as Inappropriate
Email this Article

Symbolic artificial intelligence

Article Id: WHEBN0000339417
Reproduction Date:

Title: Symbolic artificial intelligence  
Author: World Heritage Encyclopedia
Language: English
Subject: Version space learning, Universal language, Artificial intelligence
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Symbolic artificial intelligence

Symbolic artificial intelligence is the collective name for all methods in artificial intelligence research that are based on high-level "symbolic" (human-readable) representations of problems, logic and search. Symbolic AI was the dominant paradigm of AI research from the middle fifties until the late 1980s. John Haugeland gave the name GOFAI ("Good Old-Fashioned Artificial Intelligence") to symbolic AI in his 1985 book Artificial Intelligence: The Very Idea, which explored the philosophical implications of artificial intelligence research. In robotics the analogous term is GOFAIR ("Good Old-Fashioned Robotics"). The approach is based on the assumption that many aspects of intelligence can be achieved by the manipulation of symbols, an assumption defined as the "physical symbol systems hypothesis" by Allen Newell and Herbert A. Simon in the middle 1960s: The most successful form of symbolic AI is expert systems, which use a network of production rules. Production rules connect symbols in a relationship similar to an If-Then statement. The expert system processes the rules to make deductions and to determine what additional information it needs, i.e. what questions to ask, using human-readable symbols. Opponents of the symbolic approach include roboticists such as Rodney Brooks, who aims to produce autonomous robots without symbolic representation (or with only minimal representation) and computational intelligence researchers, who apply techniques such as neural networks and optimization to solve problems in machine learning and control engineering. Symbolic AI was intended to produce general, human-like intelligence in a machine, whereas most modern research is directed at specific sub-problems. Research into general intelligence is now studied in the sub-field of artificial general intelligence.

References

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.