World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000056525
Reproduction Date:

Title: Triglyceride  
Author: World Heritage Encyclopedia
Language: English
Subject: Lipid, Fat, Fatty acid, Low-density lipoprotein, Nutrition
Publisher: World Heritage Encyclopedia


Example of an unsaturated fat triglyceride. Left part: glycerol, right part from top to bottom: palmitic acid, oleic acid, alpha-linolenic acid. Chemical formula: C55H98O6

A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids.[1] As a blood lipid, it helps enable the bidirectional transference of adipose fat and blood glucose from the liver. There are many triglycerides: depending on the oil source, some are highly unsaturated, some less so.

Saturated compounds are "saturated" with hydrogen — all available places where hydrogen atoms could be bonded to carbon atoms are occupied. Unsaturated compounds have double bonds (C=C) between carbon atoms, reducing the number of places where hydrogen atoms can bond to carbon atoms. Saturated compounds have single bonds (C-C) between the carbon atoms, and the other bond is bound to hydrogen atoms (for example =CH-CH=, -CH2-CH2-, etc.).

Unsaturated fats have a lower melting point and are more likely to be liquid at room temperature. Saturated fats have a higher melting point and are more likely to be solid at room temperature.

Triglycerides are the main constituents of vegetable oil (typically more unsaturated) and animal fats (typically more saturated).[2] Triglycerides are a major component of human skin oils.[3]

Chemical structure

Triglycerides are formed by combining esters. The glycerol molecule has three hydroxyl (HO-) groups. Each fatty acid has a carboxyl group (-COOH). In triglycerides, the hydroxyl groups of the glycerol join the carboxyl groups of the fatty acid to form ester bonds:


The three fatty acids (RCO2H, R'CO2H, R''CO2H in the above equation) are usually different, but many kinds of triglycerides are known. The chain lengths of the fatty acids in naturally occurring triglycerides vary, but most contain 16, 18, or 20 carbon atoms. Natural fatty acids found in plants and animals are typically composed of only even numbers of carbon atoms, reflecting the pathway for their biosynthesis from the two-carbon building-block acetyl CoA. Bacteria, however, possess the ability to synthesise odd- and branched-chain fatty acids. As a result, ruminant animal fat contains odd-numbered fatty acids, such as 15, due to the action of bacteria in the rumen. Many fatty acids are unsaturated, some are polyunsaturated, e.g., those derived from linoleic acid.

Most natural fats contain a complex mixture of individual triglycerides. Because of this, they melt over a broad range of temperatures. Cocoa butter is unusual in that it is composed of only a few triglycerides, derived from palmitic, oleic, and stearic acids.


The pancreatic lipase acts at the ester bond, hydrolysing the bond and "releasing" the fatty acid. In triglyceride form, lipids cannot be absorbed by the duodenum. Fatty acids, monoglycerides (one glycerol, one fatty acid), and some diglycerides are absorbed by the duodenum, once the triglycerides have been broken down.

In the intestine, following the secretion of lipases and bile, triglycerides are split into monoacylglycerol and free fatty acids in a process called lipolysis. They are subsequently moved to absorptive enterocyte cells lining the intestines. The triglycerides are rebuilt in the enterocytes from their fragments and packaged together with cholesterol and proteins to form chylomicrons. These are excreted from the cells and collected by the lymph system and transported to the large vessels near the heart before being mixed into the blood. Various tissues can capture the chylomicrons, releasing the triglycerides to be used as a source of energy. Liver cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source (unless converted to a ketone), the glycerol component of triglycerides can be converted into glucose, via gluconeogenesis by conversion into Dihydroxyacetone phosphate and then into Glyceraldehyde 3-phosphate, for brain fuel when it is broken down. Fat cells may also be broken down for that reason, if the brain's needs ever outweigh the body's.

Triglycerides cannot pass through cell membranes freely. Special enzymes on the walls of blood vessels called lipoprotein lipases must break down triglycerides into free fatty acids and glycerol. Fatty acids can then be taken up by cells via the fatty acid transporter (FAT).

Triglycerides, as major components of very-low-density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice as much energy (approximately 9 kcal/g or 38 kJ/g ) as carbohydrates (approximately 4 kcal/g or 17 kJ/g ).[4]

Role in disease

In the human body, high levels of triglycerides in the bloodstream have been linked to atherosclerosis and, by extension, the risk of heart disease[5] and stroke.[4] However, the relative negative impact of raised levels of triglycerides compared to that of LDL:HDL ratios is as yet unknown. The risk can be partly accounted for by a strong inverse relationship between triglyceride level and HDL-cholesterol level.


The American Heart Association has set guidelines for triglyceride levels:[6]

Level mg/dL Level mmol/L Interpretation
<151 <1.70 Normal range – low risk
151-199 1.70-2.25 Slightly above normal
200-499 2.26-5.65 Some risk
>499 >5.65 Very high – high risk

These levels are tested after fasting 8 to 12 hours. Triglyceride levels remain temporarily higher for a period of time after eating.

Reducing triglyceride levels

Diets high in refined carbohydrates, with carbohydrates accounting for more than 60% of the total energy intake, can increase triglyceride levels.[7] Of note is how the correlation is stronger for those with higher BMI (28+) and insulin resistance (more common among overweight and obese) is a primary suspect cause of this phenomenon of carbohydrate-induced hypertriglyceridemia.[8]

There is evidence that carbohydrate consumption causing a high glycemic index can cause insulin overproduction and increase triglyceride levels in women.[9]

Adverse changes associated with carbohydrate intake, including triglyceride levels, are stronger risk factors for heart disease in women than in men.[10]

Triglyceride levels are also reduced by moderate exercise[11] and by consuming omega-3 fatty acids from fish, flax seed oil, and other sources. [12]

Carnitine has the ability to lower blood triglyceride levels.[13] In some cases, fibrates have been used to bring down triglycerides substantially.[14]

Heavy alcohol consumption can elevate triglycerides levels.[15]

Industrial uses

Linseed oil and related oils are important components of useful products used in oil paints and related coatings. Linseed oil is rich in di- and triunsaturated fatty acid components, which tend to harden in the presence of oxygen. This heat-producing hardening process is peculiar to these so-called "drying oils". It is caused by a polymerization process that begins with oxygen molecules attacking the carbon backbone.

Triglycerides are also split into their components via transesterification during the manufacture of biodiesel. The resulting fatty acid esters can be used as fuel in diesel engines. The glycerin has many uses, such as in the manufacture of food and in the production of pharmaceuticals.


Staining for fatty acids, triglycerides, lipoproteins, and other lipids is done through the use of lysochromes (fat-soluble dyes). These dyes can allow the qualification of a certain fat of interest by staining the material a specific color. Some examples: Sudan IV, Oil Red O, and Sudan Black B.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

}px; border:solid #ccc 1px; background-color:white;">
|}px|alt=Statin Pathway edit|]]
Statin Pathway edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430". 

See also


  1. ^ "Nomenclature of Lipids". IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Retrieved 2007-03-08. 
  2. ^ Nelson, D. L.; Cox, M. M. "Lehninger, Principles of Biochemistry" 3rd Ed. Worth Publishing: New York, 2000. ISBN 1-57259-153-6.
  3. ^ Lampe, M.A.; A.L. Burlingame, J. Whitney, M.L. Williams, B.E. Brown, E. Roitman, and M. Elias (1983). "Human stratum corneum lipids: characterization and regional variations". J. Lipid Res. 24: 120–130. 
  4. ^ a b Drummond et al. (2014) Nutrition for Foodservice and Culinary Professionals 8th Ed., John Wiley & Sons
  5. ^ "Boston scientists say triglycerides play key role in heart health". The Boston Globe. Retrieved 2014-06-18. 
  6. ^ "Triglycerides". Retrieved 2012-09-12. 
  7. ^ "AHA: What Cholesterol levels mean – Triglycerides tab". Retrieved 2012-10-24. 
  8. ^ Parks, E.J. (2002). "Dietary carbohydrate’s effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations". British Journal of Nutrition 87: S247–S253.  
  9. ^ "Focusing on Fiber?". Retrieved 2010-08-02. 
  10. ^ "Dietary Glycemic Load and Index and Risk of Coronary Heart Disease in a Large Italian Cohort".  
  11. ^ GILL, Jason; Sara HERD; Natassa TSETSONIS; Adrianne HARDMAN (Feb 2002). "Are the reductions in triacylglycerol and insulin levels after exercise related?". Clinical Science 102: 223–231.  
  12. ^ Davidson, Michael H. (28 January 2008). "Pharmacological Therapy for Cardiovascular Disease". In Davidson, Michael H.; Toth, Peter P.; Maki, Kevin C. Therapeutic Lipidology. Contemporary Cardiology. Cannon, Christopher P.; Armani, Annemarie M. Totowa, New Jersey: Humana Press, Inc. pp. 141–142.  
  13. ^ Balch, Phyllis A. Prescription for nutritional healing. 4th ed. New York: Avery, 2006. p. 54 Carnitine
  14. ^ "Fibrates: Where Are We Now?: Fibrates and Triglycerides". Retrieved 2010-08-02. 
  15. ^ Hemat, R A S (2003). Principles of Orthomolecularism. Urotext. p. 254.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.