#jsDisabledContent { display:none; } My Account | Register | Help

# Trigonometric substitution

Article Id: WHEBN0000375033
Reproduction Date:

 Title: Trigonometric substitution Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Trigonometric substitution

In mathematics, Trigonometric substitution is the substitution of trigonometric functions for other expressions. One may use the trigonometric identities to simplify certain integrals containing radical expressions:[1][2]

Substitution 1. If the integrand contains a2 − x2, let
x = a \sin(\theta)
and use the identity
1-\sin^2(\theta) = \cos^2(\theta).
Substitution 2. If the integrand contains a2 + x2, let
x = a \tan(\theta)

and use the identity

1+\tan^2(\theta) = \sec^2(\theta).
Substitution 3. If the integrand contains x2 − a2, let
x = a \sec(\theta)

and use the identity

\sec^2(\theta)-1 = \tan^2(\theta).

## Contents

• Examples 1
• Integrals containing a2 − x2 1.1
• Integrals containing a2 + x2 1.2
• Integrals containing x2 − a2 1.3
• Substitutions that eliminate trigonometric functions 2
• Hyperbolic substitution 3
• References 5

## Examples

### Integrals containing a2 − x2

In the integral

\int\frac{\mathrm dx}{\sqrt{a^2-x^2}}

we may use

\begin{align} \int\frac{\mathrm dx}{\sqrt{a^2-x^2}} & = \int\frac{a\cos(\theta)\,\mathrm d\theta}{\sqrt{a^2-a^2\sin^2(\theta)}} \\ &= \int\frac{a\cos(\theta)\,\mathrm d\theta}{\sqrt{a^2(1-\sin^2(\theta))}} \\ &= \int\frac{a\cos(\theta)\,\mathrm d\theta}{\sqrt{a^2\cos^2(\theta)}} \\ &= \int \mathrm d\theta \\ &= \theta+C \\ &= \arcsin \left(\tfrac{x}{a}\right)+C \end{align}

Note that the above step requires that a > 0 and cos(θ) > 0; we can choose the a to be the positive square root of a2; and we impose the restriction on θ to be −π/2 < θ < π/2 by using the arcsin function.

For a definite integral, one must figure out how the bounds of integration change. For example, as x goes from 0 to a/2, then sin(θ) goes from 0 to 1/2, so θ goes from 0 to π/6. Then we have

\int_0^{\frac{a}{2}}\frac{\mathrm dx}{\sqrt{a^2-x^2}}=\int_0^{\frac{\pi}{6}} \mathrm d\theta = \tfrac{\pi}{6}.

Some care is needed when picking the bounds. The integration above requires that −π/2 < θ < π/2, so θ going from 0 to π/6 is the only choice. If we had missed this restriction, we might have picked θ to go from π to 5π/6, which would give us the negative of the result.

### Integrals containing a2 + x2

In the integral

\int\frac{\mathrm dx}

we may write

so that the integral becomes

\begin{align} \int\frac{\mathrm dx} &= \int\frac{a\sec^2(\theta)\,\mathrm d\theta} \\ &= \int\frac{a\sec^2(\theta)\,\mathrm d\theta} \\ &= \int \frac{a\sec^2(\theta)\,\mathrm d\theta} \\ &= \int \frac{\mathrm d\theta}{a} \\ &= \tfrac{\theta}{a}+C \\ &= \tfrac{1}{a} \arctan \left(\tfrac{x}{a}\right)+C \end{align}

(provided a ≠ 0).

### Integrals containing x2 − a2

Integrals like

\int\frac{\mathrm dx}{x^2 - a^2}

should be done by partial fractions rather than trigonometric substitutions. However, the integral

\int\sqrt{x^2 - a^2}\,\mathrm dx

can be done by substitution:

x = a \sec(\theta),\quad \mathrm dx = a \sec(\theta)\tan(\theta)\,\mathrm d\theta, \quad \theta = \arcsec\left(\tfrac{x}{a}\right)
\begin{align} \int\sqrt{x^2 - a^2}\,\mathrm dx &= \int\sqrt{a^2 \sec^2(\theta) - a^2} \cdot a \sec(\theta)\tan(\theta)\,\mathrm d\theta \\ &= \int\sqrt{a^2 (\sec^2(\theta) - 1)} \cdot a \sec(\theta)\tan(\theta)\,\mathrm d\theta \\ &= \int\sqrt{a^2 \tan^2(\theta)} \cdot a \sec(\theta)\tan(\theta)\,\mathrm d\theta \\ &= \int a^2 \sec(\theta)\tan^2(\theta)\,\mathrm d\theta \\ &= a^2 \int \sec(\theta)(\sec^2(\theta) - 1)\,\mathrm d\theta \\ &= a^2 \int (\sec^3(\theta) - \sec(\theta))\,\mathrm d\theta. \end{align}

We can then solve this using the formula for the integral of secant cubed.

## Substitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions. In particular, see Tangent half-angle substitution.

For instance,

\begin{align} \int f(\sin(x), \cos(x))\,\mathrm dx &=\int\frac1{\pm\sqrt{1-u^2}} f\left(u,\pm\sqrt{1-u^2}\right)\,\mathrm du && u=\sin (x) \\ \int f(\sin(x), \cos(x))\,\mathrm dx &=\int\frac{1}{\mp\sqrt{1-u^2}} f\left(\pm\sqrt{1-u^2},u\right)\,\mathrm du && u=\cos (x) \\ \int f(\sin(x), \cos(x))\,\mathrm dx &=\int\frac2{1+u^2} f \left(\frac{2u}{1+u^2},\frac{1-u^2}{1+u^2}\right)\,\mathrm du && u=\tan\left (\tfrac{x}{2} \right ) \\ \int\frac{\cos x}{(1+\cos x)^3}\,\mathrm dx &= \int\frac2{1+u^2}\frac{\frac{1-u^2}{1+u^2}}{\left(1+\frac{1-u^2}{1+u^2}\right)^3}\,\mathrm du = \int \frac{1-u^2}{1+u^2}\,\mathrm du \end{align}

## Hyperbolic substitution

Substitutions of hyperbolic functions can also be used to simplify integrals.[3]

In the integral \int \frac{1}{\sqrt{a^2+x^2}}\,\mathrm dx, make the substitution x=a\sinh{u}, \mathrm dx=a\cosh{u}\,\mathrm du.

Then, using the identities \cosh^2 (x) - \sinh^2 (x) = 1 and \sinh^{-1}{x} = \ln(x + \sqrt{x^2 + 1}),

\begin{align} \int \frac{1}{\sqrt{a^2+x^2}}\,\mathrm dx &= \int \frac{a\cosh{u}}{\sqrt{a^2+a^2\sinh^2{u}}}\,\mathrm du\\ &=\int \frac{a\cosh{u}}{a\sqrt{1+\sinh^2{u}}}\,\mathrm du\\ &=\int \frac{a\cosh{u}}{a\cosh{u}}\,\mathrm du\\ &=u+C\\ &=\sinh^{-1}{\frac{x}{a}}+C\\ &=\ln\left(\sqrt{\frac{x^2}{a^2} + 1} + \frac{x}{a}\right) + C\\ &=\ln\left(\frac{\sqrt{x^2+a^2} + x}{a}\right) + C \end{align}

## References

1. ^
2. ^
3. ^ Boyadzhiev, Khristo N. "Hyperbolic Substitutions for Integrals" (PDF). Retrieved 4 March 2013.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.