World Library  
Flag as Inappropriate
Email this Article

True anomaly

Article Id: WHEBN0000969603
Reproduction Date:

Title: True anomaly  
Author: World Heritage Encyclopedia
Language: English
Subject: Orbital mechanics, Orbital elements, Kepler's laws of planetary motion, Parabolic trajectory, Semi-major axis
Collection: Orbits
Publisher: World Heritage Encyclopedia
Publication
Date:
 

True anomaly

The true anomaly of point P is the angle f. The center of the ellipse is point C, and the focus is point F.

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits).

The true anomaly is usually denoted by the Greek letters \,\nu or \,\theta, or the Latin letter f .

The true anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the eccentric anomaly and the mean anomaly.

Contents

  • Formulas 1
    • From state vectors 1.1
      • Circular orbit 1.1.1
      • Circular orbit with zero inclination 1.1.2
    • From the eccentric anomaly 1.2
    • Radius from true anomaly 1.3
  • Notes 2
  • See also 3
  • References 4

Formulas

From state vectors

For elliptic orbits true anomaly \nu\,\! can be calculated from orbital state vectors as:

\nu = \arccos { {\mathbf{e} \cdot \mathbf{r}} \over { \mathbf{\left |e \right |} \mathbf{\left |r \right |} }}   (if \mathbf{r} \cdot \mathbf{v} < 0 then replace \nu\ by 2\pi-\nu\ )

where:

Circular orbit

For circular orbits the true anomaly is undefined because circular orbits do not have a uniquely determined periapsis. Instead one uses the argument of latitude u\,\!:

u = \arccos { {\mathbf{n} \cdot \mathbf{r}} \over { \mathbf{\left |n \right |} \mathbf{\left |r \right |} }}   (if \mathbf{n} \cdot \mathbf{v} >0 then replace u\ by 2\pi-u\ )

where:

  • \mathbf{n} is vector pointing towards the ascending node (i.e. the z-component of \mathbf{n} is zero).

Circular orbit with zero inclination

For circular orbits with zero inclination the argument of latitude is also undefined, because there is no uniquely determined line of nodes. One uses the true longitude instead:

l = \arccos { r_x \over { \mathbf{\left |r \right |}}}   (if v_x > 0\ then replace l\ by 2\pi-l\ )

where:

From the eccentric anomaly

The relation between the true anomaly \,\nu and the eccentric anomaly E is:

\cos{\nu} = }

or using sin[1] and tan

\sin{\nu} = \over {1 - e \cos{E}}}
\tan{\nu} = \over {\cos{\nu}}} = \over {\cos{E} -e}}

or equivalently

\tan{\nu \over 2} = \sqrt} \tan{E \over 2}.

Therefore

\nu = 2 \, \mathop{\mathrm{arg}}\left(\sqrt{1+e} \, \sin\frac{E}{2} , \sqrt{1-e}\cos\frac{E}{2}\right)

where \operatorname{arg}(x, y) is the polar argument of the vector \left(x, y\right) (available in many programming languages as the library function atan2(y, x) in Fortran and MATLAB, or as ArcTan(x, y) in Wolfram Mathematica).

Radius from true anomaly

The radius (distance from the focus of attraction and the orbiting body) is related to the true anomaly by the formula

r = a\cdot{1 - e^2 \over 1 + e \cdot \cos\nu}\,\!

where a is the orbit's semi-major axis (segment cz).

Notes

  1. ^ Fundamentals of Astrodynamics and Applications by David A. Vallado

See also

References

  • Murray, C. D. & Dermott, S. F. 1999, Solar System Dynamics, Cambridge University Press, Cambridge. ISBN 0-521-57597-4
  • Plummer, H.C., 1960, An Introductory treatise on Dynamical Astronomy, Dover Publications, New York. OCLC 1311887 (Reprint of the 1918 Cambridge University Press edition.)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.