This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000041835 Reproduction Date:
Universal Time (UT) is a time standard based on the rotation of the Earth. It is a modern continuation of Greenwich Mean Time (GMT), i.e., the mean solar time on the Prime Meridian at Greenwich, and GMT is sometimes used loosely as a synonym for UTC. In fact, the expression "Universal Time" is ambiguous (when accuracy of better than a few seconds is required), as there are several versions of it, the most commonly used being UTC and UT1 (see below).[1] All of these versions of UT are based on the rotation of the Earth in relation to distant celestial objects (stars and quasars), but with a scaling factor and other adjustments to make them closer to solar time.
Prior to the introduction of standard time, each municipality throughout the civilized world set its official clock, if it had one, according to the local position of the Sun (see solar time). This served adequately until the introduction of rail travel in Britain, which made it possible to travel fast enough over long distances to require continuous re-setting of timepieces as a train progressed in its daily run through several towns. Greenwich Mean Time, where all clocks in Britain were set to the same time, was established to solve this problem. Chronometers or telegraphy were used to synchronize these clocks.[2]
Standard time, as originally proposed by Scottish-Canadian Sir Sandford Fleming in 1879, divided the world into twenty-four time zones, each one covering 15 degrees of longitude. All clocks within each zone would be set to the same time as the others, but differed by one hour from those in the neighboring zones. The local time at the Royal Greenwich Observatory in Greenwich, England was chosen as standard at the 1884 International Meridian Conference, leading to the widespread use of Greenwich Mean Time to set local clocks. This location was chosen because by 1884 two-thirds of all nautical charts and maps already used it as their prime meridian.[3] The conference did not adopt Fleming's time zones because they were outside the purpose for which it was called, which was to choose a basis for universal time (as well as a prime meridian).
During the period between 1848 to 1972, all of the major countries adopted time zones based on the Greenwich meridian.[4]
In 1935, the term Universal Time was recommended by the International Astronomical Union as a more precise term than Greenwich Mean Time, because GMT could refer to either an astronomical day starting at noon or a civil day starting at midnight.[5] The term Greenwich Mean Time persists, however, in common usage to this day in reference to civil timekeeping.
Based on the rotation of the Earth, time can be measured by observing celestial bodies crossing the meridian every day. Astronomers found that it was more accurate to establish time by observing stars as they crossed a meridian rather than by observing the position of the Sun in the sky. Nowadays, UT in relation to International Atomic Time (TAI) is determined by Very Long Baseline Interferometry (VLBI) observations of distant quasars, a method which can determine UT1 to within 4 milliseconds.[6][7]
The rotation of the Earth is somewhat irregular, and is very gradually slowing due to tidal acceleration. Furthermore, the length of the second was determined from observations of the Moon between 1750 and 1890. All of these factors cause the mean solar day, on the average, to be slightly longer than the nominal 86,400 SI seconds, the traditional number of seconds per day. As UT is slightly irregular in its rate, astronomers introduced Ephemeris Time, which has since been replaced by Terrestrial Time (TT). Because Universal Time is synchronous with night and day, and that more precise atomic-frequency standards drift away from this, however, UT is still used to produce a correction (called a leap second) to atomic time, in order to obtain a broadcast form of civil time that carries atomic frequency. Thus, civil broadcast standards for time and frequency usually follow International Atomic Time closely, but occasionally change discontinuously (or "leap") in order to prevent them from drifting too far from mean solar time.
Barycentric Dynamical Time (TDB), a form of atomic time, is now used in the construction of the ephemerides of the planets and other solar system objects, for two main reasons.[9] First, these ephemerides are tied to optical and radar observations of planetary motion, and the TDB time scale is fitted so that Newton's laws of motion, with corrections for general relativity, are followed. Next, the time scales based on Earth's rotation are not uniform and therefore, are not suitable for predicting the motion of bodies in our solar system.
There are several versions of Universal Time:
The table shows the dates of adoption of time zones based on the Greenwich meridian, including half-hour zones.
Apart from Nepal Time Zone (+5h 45m) and Chatham Isle (+12h 45m), all countries were keeping time within an even hour or half-hour of Greenwich.
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
Space, History, Chronology, Spacetime, Second
Metabolism, Mutation, Bipolar disorder, Pregnancy, Mania
Red dwarf, Galaxy, Nova, Sun, White dwarf
Solar System, Mars, Earth, Apollo program, Pluto
Time, Daylight saving time, Second, Gregorian calendar, Millennium
Zodiac, Mars, Latin, Star, Chinese language
Time, Second, Millennium, Chronology, Spacetime
Time, Clock, Aluminium, Ytterbium, National Institute of Standards and Technology
Time, Second, Sun, Day, Clock