In game theory and economic theory, a zerosum game is a mathematical representation of a situation in which a participant's gain (or loss) of utility is exactly balanced by the losses (or gains) of the utility of the other participant(s). If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus cutting a cake, where taking a larger piece reduces the amount of cake available for others, is a zerosum game if all participants value each unit of cake equally (see marginal utility). In contrast, nonzerosum describes a situation in which the interacting parties' aggregate gains and losses are either less than or more than zero. A zerosum game is also called a strictly competitive game while nonzerosum games can be either competitive or noncompetitive. Zerosum games are most often solved with the minimax theorem which is closely related to linear programming duality,^{[1]} or with Nash equilibrium.
Contents

Definition 1

Solution 2

Nonzerosum 3

Economics 3.1

Psychology 3.2

Complexity 3.3

Extensions 4

Misunderstandings 5

Zerosum mentality 6

References 7

See also 8

Further reading 9

External links 10
Definition

Choice 1

Choice 2

Choice 1

A, A

B, B

Choice 2

C, C

D, D

Generic zerosum game

The zerosum property (if one gains, another loses) means that any result of a zerosum situation is Pareto optimal (generally, any game where all strategies are Pareto optimal is called a conflict game).^{[2]}
Zerosum games are a specific example of constant sum games where the sum of each outcome is always zero. Such games are distributive, not integrative; the pie cannot be enlarged by good negotiation.
Situations where participants can all gain or suffer together are referred to as nonzerosum. Thus, a country with an excess of bananas trading with another country for their excess of apples, where both benefit from the transaction, is in a nonzerosum situation. Other nonzerosum games are games in which the sum of gains and losses by the players are sometimes more or less than what they began with.
Solution
For 2player finite zerosum games, the different game theoretic solution concepts of Nash equilibrium, minimax, and maximin all give the same solution. If the players are allowed to play a mixed strategy, the game always has an equilibrium.
Example
A zerosum game

A

B

C

1

30, 30

10, 10

20, 20

2

10, 10

20, 20

20, 20

A game's payoff matrix is a convenient representation. Consider for example the twoplayer zerosum game pictured at right.
The order of play proceeds as follows: The first player (red) chooses in secret one of the two actions 1 or 2; the second player (blue), unaware of the first player's choice, chooses in secret one of the three actions A, B or C. Then, the choices are revealed and each player's points total is affected according to the payoff for those choices.
Example: Red chooses action 2 and Blue chooses action B. When the payoff is allocated, Red gains 20 points and Blue loses 20 points.
Now, in this example game both players know the payoff matrix and attempt to maximize the number of their points. What should they do?
Red could reason as follows: "With action 2, I could lose up to 20 points and can win only 20, while with action 1 I can lose only 10 but can win up to 30, so action 1 looks a lot better." With similar reasoning, Blue would choose action C. If both players take these actions, Red will win 20 points. But what happens if Blue anticipates Red's reasoning and choice of action 1, and goes for action B, so as to win 10 points? Or if Red in turn anticipates this devious trick and goes for action 2, so as to win 20 points after all?
Émile Borel and John von Neumann had the fundamental and surprising insight that probability provides a way out of this conundrum. Instead of deciding on a definite action to take, the two players assign probabilities to their respective actions, and then use a random device which, according to these probabilities, chooses an action for them. Each player computes the probabilities so as to minimize the maximum expected pointloss independent of the opponent's strategy. This leads to a linear programming problem with the optimal strategies for each player. This minimax method can compute probably optimal strategies for all twoplayer zerosum games.
For the example given above, it turns out that Red should choose action 1 with probability 4/7 and action 2 with probability 3/7, while Blue should assign the probabilities 0, 4/7, and 3/7 to the three actions A, B, and C. Red will then win 20/7 points on average per game.
Solving
The Nash equilibrium for a 2player, zerosum game can be found by solving a linear programming problem. Suppose a zerosum game has a payoff matrix M where element M_{i,j} is the payoff obtained when the minimizing player chooses pure strategy i and the maximizing player chooses pure strategy j (i.e. the player trying to minimize the payoff chooses the row and the player trying to maximize the payoff chooses the column). Assume every element of M is positive. The game will have at least one Nash equilibrium. The Nash equilibrium can be found (see ref. [2], page 740) by solving the following linear program to find a vector u:

Minimize:


\sum_{i} u_i

Subject to the constraints:

u ≥ 0

M u ≥ 1.
The first constraint says each element of the u vector must be nonnegative, and the second constraint says each element of the M u vector must be at least 1. For the resulting u vector, the inverse of the sum of its elements is the value of the game. Multiplying u by that value gives a probability vector, giving the probability that the maximizing player will choose each of the possible pure strategies.
If the game matrix does not have all positive elements, simply add a constant to every element that is large enough to make them all positive. That will increase the value of the game by that constant, and will have no effect on the equilibrium mixed strategies for the equilibrium.
The equilibrium mixed strategy for the minimizing player can be found by solving the dual of the given linear program. Or, it can be found by using the above procedure to solve a modified payoff matrix which is the transpose and negation of M (adding a constant so it's positive), then solving the resulting game.
If all the solutions to the linear program are found, they will constitute all the Nash equilibria for the game. Conversely, any linear program can be converted into a twoplayer, zerosum game by using a change of variables that puts it in the form of the above equations. So such games are equivalent to linear programs, in general.
Nonzerosum
Economics
Many economic situations are not zerosum, since valuable goods and services can be created, destroyed, or badly allocated in a number of ways, and any of these will create a net gain or loss of utility to numerous stakeholders. Specifically, all trade is by definition positive sum, because when two parties agree to an exchange each party must consider the goods it is receiving to be more valuable than the goods it is delivering. In fact, all economic exchanges must benefit both parties to the point that each party can overcome its transaction costs, or the transaction would simply not take place.
There is some semantic confusion in addressing exchanges under coercion. If we assume that "Trade X", in which Adam trades Good A to Brian for Good B, does not benefit Adam sufficiently, Adam will ignore Trade X (and trade his Good A for something else in a different positivesum transaction, or keep it). However, if Brian uses force to ensure that Adam will exchange Good A for Good B, then this says nothing about the original Trade X. Trade X was not, and still is not, positivesum (in fact, this nonoccurring transaction may be zerosum, if Brian's net gain of utility coincidentally offsets Adam's net loss of utility). What has in fact happened is that a new trade has been proposed, "Trade Y", where Adam exchanges Good A for two things: Good B and escaping the punishment imposed by Brian for refusing the trade. Trade Y is positivesum, because if Adam wanted to refuse the trade, he theoretically has that option (although it is likely now a much worse option), but he has determined that his position is better served in at least temporarily putting up with the coercion. Under coercion, the coerced party is still doing the best they can under their unfortunate circumstances, and any exchanges they make are positivesum.
There is additional confusion under asymmetric information. Although many economic theories assume perfect information, economic participants with imperfect or even no information can always avoid making trades that they feel are not in their best interest. Considering transaction costs, then, no zerosum exchange would ever take place, although asymmetric information can reduce the number of positivesum exchanges, as occurs in "The Market for Lemons".
Psychology
The most common or simple example from the subfield of social psychology is the concept of "social traps". In some cases pursuing our personal interests can enhance our collective wellbeing, but in others personal interest results in mutually destructive behavior.
Complexity
It has been theorized by Robert Wright in his book Nonzero: The Logic of Human Destiny, that society becomes increasingly nonzerosum as it becomes more complex, specialized, and interdependent.
Extensions
In 1944

Play zerosum games online by Elmer G. Wiens.

Game Theory & its Applications  comprehensive text on psychology and game theory. (Contents and Preface to Second Edition.)

A playable zerosum game and its mixed strategy Nash equilibrium.
External links

Misstating the Concept of ZeroSum Games within the Context of Professional Sports Trading Strategies, series Pardon the Interruption (20100923) ESPN, created by Tony Kornheiser and Michael Wilbon, performance by Bill Simmons

Handbook of Game Theory  volume 2, chapter Zerosum twoperson games, (1994) Elsevier Amsterdam, by Raghavan, T. E. S., Edited by Aumann and Hart, pages=735–759, isbn=0444894276

Power:Its Forms, Bases and Uses (1997) Transaction Publishers, by Dennis Wrong
Further reading
See also

^ ^{a} ^{b} , chapters 1 & 7

^ Bowles, Samuel (2004). Microeconomics: Behavior, Institutions, and Evolution.

^ "Theory of Games and Economic Behavior". Princeton University Press (1953). June 25, 2005. Retrieved 20101111.
References
"Zerosum mentality" is a term used in community psychology to describe a way of thinking that assumes all games are zerosum: that for every winner there is a loser; for every gain there is a loss.
Zerosum mentality
Zerosum games and particularly their solutions are commonly misunderstood by critics of game theory, usually with respect to the independence and rationality of the players, as well as to the interpretation of utility functions. Furthermore, the word "game" does not imply the model is valid only for recreational games.^{[1]}
Misunderstandings
[3]
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.