World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Emulating Atlantic Overturning Strength for Low Emission Scenarios: Consequences for Sea-level Rise Along the North American East Coast : Volume 2, Issue 2 (28/09/2011)

By Schleussner, C. F.

Click here to view

Book Id: WPLBN0004007157
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Emulating Atlantic Overturning Strength for Low Emission Scenarios: Consequences for Sea-level Rise Along the North American East Coast : Volume 2, Issue 2 (28/09/2011)  
Author: Schleussner, C. F.
Volume: Vol. 2, Issue 2
Language: English
Subject: Science, Earth, System
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Meinshausen, M., Frieler, K., Levermann, A., Schleussner, C. F., & Yin, J. (2011). Emulating Atlantic Overturning Strength for Low Emission Scenarios: Consequences for Sea-level Rise Along the North American East Coast : Volume 2, Issue 2 (28/09/2011). Retrieved from

Description: Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany. In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 °C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 °C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10%, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.

Emulating Atlantic overturning strength for low emission scenarios: consequences for sea-level rise along the North American east coast

Bingham, R. J. and Hughes, C. W.: Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America, Geophys. Res. Lett., 36, L02603, doi:10.1029/2008GL036215, 2009. \bibitem[{Challenor et al.(2006)}] challenor_hankin06 Challenor, P. G., Hankin, R. K. S., and Marsh, R.: Towards the probability of rapid climate change, Avoiding dangerous climate change, Cambridge Univ. Pr, 55–63, 2006.; Challenor, P., McNeall, D., and Gattiker, J.: Assessing the probability of rare climate events, The Oxford handbook of applied Bayesian analysis, Oxford Univ. Pr., 403–430, 2010.; Collins, M., Booth, B. B. B., Harris, G. R., Murphy, J. M.,Sexton, D. M. H., and Webb, M. J.: Towards quantifying uncertainty in transient climate change, Clim. Dynam., 27, 127–147, 2006.; Delworth, T., Stouffer, R., Dixon, K., Spelman, M., Knutson, T., Broccoli, A., Kushner, P., and Wetherald, R.: Review of simulations of climate variability and change with the GFDL R30 coupled climate model, Clim. Dynam., 19, 555–574, 2002.; Dijkstra, H., Raa, L., and Weijer, W.: A systematic approach to determine thresholds of the ocean's Thermohaline circulation, Tellus A, 56, 362–370, 2004.; Drijfhout, S. S., Weber, S. L., and van der Swaluw, E.: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates, Clim. Dynam., doi:10.1007/s00382-010-0930-z, in press, 2010.; Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, K., Yoshikawa, C., and Zeng, N.: Climate Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, J. Climate, 19, 3337–3353, 2006.; Fürst, J., Levermann, A.: A minimal model for wind- and mixing-driven overturning - threshold behaviour for both driving mechanisms, Clim. Dynam., doi:10.1007/s00382-011-1003-7, in press, 2011.; Giorgi, F.: A simple equation for regional climate change and associated uncertainty, J. Climate, 21, 1589–1604, 2008.; Gnanadesikan, A.: A simple predictive model for the structure of the oceanic pycnocline, Science, 283, 2077–2079, 1999.; Graversen, R. G., Drijfhout, S., Hazeleger, W., Wal, R., Bintanja, R., and Helsen, M.: Greenland's contribution to global sea-level rise by the end of the 21st century, Clim. Dynam., doi:10.1007/s00382-010-0918-8, in press, 2010.; Gregory, J. M. and Huybrechts, P.: Ice-sheet contributions to future sea-level change, Philos. T. Roy. Soc. A, 364, 1709–1731, 2006.; Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert, E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Sokolov, A. P., and Thorpe, R. B.: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration, Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209, 2005.; Hasumi, H. and Emori, S.: K-1 coupled model (MIROC) description, Center for Climate System Research, University of Tokyo, K-1 Tech. Rep., 1, 34, 2004.; Griesel, A. and Morales-Maqueda, M. A.: The relation of meridional pressure gradients to North {Atlantic} Deep {Water} volume


Click To View

Additional Books

  • Polynomial Cointegration Tests of Anthro... (by )
  • Mesospheric Co Above Troll Station, Anta... (by )
  • Strengthening of the Hydrological Cycle ... (by )
  • Carina: Nutrient Data in the Atlantic Oc... (by )
  • Explaining the Seasonal Cycle of the Glo... (by )
  • The Global Distribution of Pteropods and... (by )
  • Mesospheric Co Above Troll Station, Anta... (by )
  • Calibration Procedures and First Data Se... (by )
  • Spatio-temporal Analysis of the Urban–ru... (by )
  • Definitions of Climate and Climate Chang... (by )
  • Can Bioenergy Cropping Compensate High C... (by )
  • The Eigenvalue Problem for Ice-shelf Vib... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.